2 resultados para visual analog scale
em DRUM (Digital Repository at the University of Maryland)
Resumo:
A 2-dimensional dynamic analog of squid tentacles was presented. The tentacle analog consists of a multi-cell structure, which can be easily replicated to a large scale. Each cell of the model is a quadrilateral with unit masses at the corners. Each side of the quadrilateral is a spring-damper system in parallel. The spring constants are the controls for the system. The dynamics are subject to the constraint that the area of each quadrilateral must remain constant. The system dynamics was analyzed, and various equilibrium points were found with different controls. Then these equilibrium points were further determined experimentally, demonstrated to be asymptotically stable. A simulation built in MATLAB was used to find the convergence rates under different controls and damping coefficients. Finally, a control scheme was developed and used to drive the system to several configurations observed in real tentacle.
Resumo:
Increasing the size of training data in many computer vision tasks has shown to be very effective. Using large scale image datasets (e.g. ImageNet) with simple learning techniques (e.g. linear classifiers) one can achieve state-of-the-art performance in object recognition compared to sophisticated learning techniques on smaller image sets. Semantic search on visual data has become very popular. There are billions of images on the internet and the number is increasing every day. Dealing with large scale image sets is intense per se. They take a significant amount of memory that makes it impossible to process the images with complex algorithms on single CPU machines. Finding an efficient image representation can be a key to attack this problem. A representation being efficient is not enough for image understanding. It should be comprehensive and rich in carrying semantic information. In this proposal we develop an approach to computing binary codes that provide a rich and efficient image representation. We demonstrate several tasks in which binary features can be very effective. We show how binary features can speed up large scale image classification. We present learning techniques to learn the binary features from supervised image set (With different types of semantic supervision; class labels, textual descriptions). We propose several problems that are very important in finding and using efficient image representation.