2 resultados para university sector

em DRUM (Digital Repository at the University of Maryland)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this dissertation is to evaluate the potential downstream influence of the Indian Ocean (IO) on El Niño/Southern Oscillation (ENSO) forecasts through the oceanic pathway of the Indonesian Throughflow (ITF), atmospheric teleconnections between the IO and Pacific, and assimilation of IO observations. Also the impact of sea surface salinity (SSS) in the Indo-Pacific region is assessed to try to address known problems with operational coupled model precipitation forecasts. The ITF normally drains warm fresh water from the Pacific reducing the mixed layer depths (MLD). A shallower MLD amplifies large-scale oceanic Kelvin/Rossby waves thus giving ~10% larger response and more realistic ENSO sea surface temperature (SST) variability compared to observed when the ITF is open. In order to isolate the impact of the IO sector atmospheric teleconnections to ENSO, experiments are contrasted that selectively couple/decouple the interannual forcing in the IO. The interannual variability of IO SST forcing is responsible for 3 month lagged widespread downwelling in the Pacific, assisted by off-equatorial curl, leading to warmer NINO3 SST anomaly and improved ENSO validation (significant from 3-9 months). Isolating the impact of observations in the IO sector using regional assimilation identifies large-scale warming in the IO that acts to intensify the easterlies of the Walker circulation and increases pervasive upwelling across the Pacific, cooling the eastern Pacific, and improving ENSO validation (r ~ 0.05, RMS~0.08C). Lastly, the positive impact of more accurate fresh water forcing is demonstrated to address inadequate precipitation forecasts in operational coupled models. Aquarius SSS assimilation improves the mixed layer density and enhances mixing, setting off upwelling that eventually cools the eastern Pacific after 6 months, counteracting the pervasive warming of most coupled models and significantly improving ENSO validation from 5-11 months. In summary, the ITF oceanic pathway, the atmospheric teleconnection, the impact of observations in the IO, and improved Indo-Pacific SSS are all responsible for ENSO forecast improvements, and so each aspect of this study contributes to a better overall understanding of ENSO. Therefore, the upstream influence of the IO should be thought of as integral to the functioning of ENSO phenomenon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation analyzes how individuals respond to the introduction of taxation aimed to reduce vehicle pollution, greenhouse gases and traffic. The first chapter analyzes a vehicle registration tax based on emissions of carbon dioxide (CO2), a major greenhouse gas, adopted in the UK in 2001 and subject to major changes in the following years. I identify the impact of the policy on new vehicle registrations and carbon emissions, compared to alternative measures. Results show that consumers respond to the tax by purchasing cleaner cars, but a carbon tax generating the same revenue would further reduce carbon emissions. The second chapter looks at a pollution charge (polluting vehicles pay to enter the city) and a congestion charge (all vehicles pay) adopted in 2008 and 2011 in Milan, Italy, and how they affected the concentration of nitrogen dioxides (NOx). I use data from pollution monitoring stations to measure the change between areas adopting the tax and other areas. Results show that in the first quarter of their introduction, both policies decreased NOx concentration in a range of -8% and -5%, but the effect declines over time, especially in the case of the pollution charge. The third chapter examines a trial conducted in 2005 in the Seattle, WA, area, in which vehicle trips by 276 volunteer households were recorded with a GPS device installed in their vehicles. Households received a monetary endowment which they used to pay a toll for each mile traveled: the toll varied with the time of the day, the day of the week and the type of road used. Using information on driving behavior, I show that in the first week a $0.10 toll per mile reduces the number of miles driven by around 7%, but the effect lasts only few weeks at most. The effect is mainly driven by a reduction in highway miles during trips from work to home, and it is strongly influenced by past driving behavior, income, the size of the initial endowment and the number of children in the household.