1 resultado para thesis coding
em DRUM (Digital Repository at the University of Maryland)
Filtro por publicador
- JISC Information Environment Repository (1)
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberdeen University (5)
- Academic Archive On-line (Jönköping University; Sweden) (2)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (53)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (38)
- Archive of European Integration (1)
- Aston University Research Archive (67)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (14)
- Biodiversity Heritage Library, United States (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (39)
- Brock University, Canada (36)
- Brunel University (1)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (41)
- Cochin University of Science & Technology (CUSAT), India (13)
- Coffee Science - Universidade Federal de Lavras (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (22)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Dalarna University College Electronic Archive (7)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (7)
- Digital Peer Publishing (2)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (7)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (45)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (9)
- Glasgow Theses Service (12)
- Harvard University (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico de Leiria (2)
- Instituto Politécnico do Porto, Portugal (4)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (23)
- Nottingham eTheses (1)
- Publishing Network for Geoscientific & Environmental Data (5)
- QSpace: Queen's University - Canada (6)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (18)
- Repositório da Produção Científica e Intelectual da Unicamp (62)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (17)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (3)
- Scielo Saúde Pública - SP (10)
- South Carolina State Documents Depository (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (13)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universita di Parma (8)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (48)
- Université de Montréal (9)
- Université de Montréal, Canada (89)
- Université Laval Mémoires et thèses électroniques (2)
- University of Connecticut - USA (2)
- University of Michigan (42)
- University of Queensland eSpace - Australia (38)
- University of Southampton, United Kingdom (46)
- University of Washington (12)
Resumo:
Theories of sparse signal representation, wherein a signal is decomposed as the sum of a small number of constituent elements, play increasing roles in both mathematical signal processing and neuroscience. This happens despite the differences between signal models in the two domains. After reviewing preliminary material on sparse signal models, I use work on compressed sensing for the electron tomography of biological structures as a target for exploring the efficacy of sparse signal reconstruction in a challenging application domain. My research in this area addresses a topic of keen interest to the biological microscopy community, and has resulted in the development of tomographic reconstruction software which is competitive with the state of the art in its field. Moving from the linear signal domain into the nonlinear dynamics of neural encoding, I explain the sparse coding hypothesis in neuroscience and its relationship with olfaction in locusts. I implement a numerical ODE model of the activity of neural populations responsible for sparse odor coding in locusts as part of a project involving offset spiking in the Kenyon cells. I also explain the validation procedures we have devised to help assess the model's similarity to the biology. The thesis concludes with the development of a new, simplified model of locust olfactory network activity, which seeks with some success to explain statistical properties of the sparse coding processes carried out in the network.