2 resultados para the similar structure
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The Mid-oceanic ridge system is a feature unique to Earth. It is one of the fundamental components of plate tectonics and reflects interior processes of mantle convection within the Earth. The thermal structure beneath the mid-ocean ridges has been the subject of several modeling studies. It is expected that the elastic thickness of the lithosphere is larger near the transform faults that bound mid-ocean ridge segments. Oceanic core complexes (OCCs), which are generally thought to result from long-lived fault slip and elastic flexure, have a shape that is sensitive to elastic thickness. By modeling the shape of OCCs emplaced along a ridge segment, it is possible to constraint elastic thickness and therefore the thermal structure of the plate and how it varies along-axis. This thesis builds upon previous studies that utilize thin plate flexure to reproduce the shape of OCCs. I compare OCC shape to a suite of models in which elastic thickness, fault dip, fault heave, crustal thickness, and axial infill are systematically varied. Using a grid search, I constrain the parameters that best reproduce the bathymetry and/or the slope of ten candidate OCCs identified along the 12°—15°N segment of the Mid-Atlantic Ridge. The lithospheric elastic thicknesses that explains these OCCs is thinner than previous investigators suggested and the fault planes dip more shallowly in the subsurface, although at an angle compatible with Anderson’s theory of faulting. No relationships between model parameters and an oceanic core complexes location within a segment are identified with the exception that the OCCs located less than 20km from a transform fault have slightly larger elastic thickness than OCCs in the middle of the ridge segment.
Resumo:
Urban forests are often highly fragmented with many exotic species. Altered disturbance regimes and environmental pollutants influence urban forest vegetation. One of the best ways to understand the impacts of land-use on forest composition is through long-term research. In 1998, the Baltimore Ecosystem Study established eight forest plots to investigate the impacts of urbanization on natural ecosystems. Four plots were located in urban forest patches and four were located in rural forests. In 2015, I revisited these plots to measure abundances and quantify change in forest composition, diversity, and structure. Sapling, shrub, and seedling abundance were reduced in the rural plots. Alpha diversity and turnover was lower in the rural plots. Beta diversity was reduced in the rural plots. The structure of the urban plots was mostly unchanged, except for a highly reduced sapling layer. Beta diversity in the urban plots was consistent across surveys due to high species turnover.