2 resultados para systematic machine design
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Strawberries harvested for processing as frozen fruits are currently de-calyxed manually in the field. This process requires the removal of the stem cap with green leaves (i.e. the calyx) and incurs many disadvantages when performed by hand. Not only does it necessitate the need to maintain cutting tool sanitation, but it also increases labor time and exposure of the de-capped strawberries before in-plant processing. This leads to labor inefficiency and decreased harvest yield. By moving the calyx removal process from the fields to the processing plants, this new practice would reduce field labor and improve management and logistics, while increasing annual yield. As labor prices continue to increase, the strawberry industry has shown great interest in the development and implementation of an automated calyx removal system. In response, this dissertation describes the design, operation, and performance of a full-scale automatic vision-guided intelligent de-calyxing (AVID) prototype machine. The AVID machine utilizes commercially available equipment to produce a relatively low cost automated de-calyxing system that can be retrofitted into existing food processing facilities. This dissertation is broken up into five sections. The first two sections include a machine overview and a 12-week processing plant pilot study. Results of the pilot study indicate the AVID machine is able to de-calyx grade-1-with-cap conical strawberries at roughly 66 percent output weight yield at a throughput of 10,000 pounds per hour. The remaining three sections describe in detail the three main components of the machine: a strawberry loading and orientation conveyor, a machine vision system for calyx identification, and a synchronized multi-waterjet knife calyx removal system. In short, the loading system utilizes rotational energy to orient conical strawberries. The machine vision system determines cut locations through RGB real-time feature extraction. The high-speed multi-waterjet knife system uses direct drive actuation to locate 30,000 psi cutting streams to precise coordinates for calyx removal. Based on the observations and studies performed within this dissertation, the AVID machine is seen to be a viable option for automated high-throughput strawberry calyx removal. A summary of future tasks and further improvements is discussed at the end.
Resumo:
Datacenters have emerged as the dominant form of computing infrastructure over the last two decades. The tremendous increase in the requirements of data analysis has led to a proportional increase in power consumption and datacenters are now one of the fastest growing electricity consumers in the United States. Another rising concern is the loss of throughput due to network congestion. Scheduling models that do not explicitly account for data placement may lead to a transfer of large amounts of data over the network causing unacceptable delays. In this dissertation, we study different scheduling models that are inspired by the dual objectives of minimizing energy costs and network congestion in a datacenter. As datacenters are equipped to handle peak workloads, the average server utilization in most datacenters is very low. As a result, one can achieve huge energy savings by selectively shutting down machines when demand is low. In this dissertation, we introduce the network-aware machine activation problem to find a schedule that simultaneously minimizes the number of machines necessary and the congestion incurred in the network. Our model significantly generalizes well-studied combinatorial optimization problems such as hard-capacitated hypergraph covering and is thus strongly NP-hard. As a result, we focus on finding good approximation algorithms. Data-parallel computation frameworks such as MapReduce have popularized the design of applications that require a large amount of communication between different machines. Efficient scheduling of these communication demands is essential to guarantee efficient execution of the different applications. In the second part of the thesis, we study the approximability of the co-flow scheduling problem that has been recently introduced to capture these application-level demands. Finally, we also study the question, "In what order should one process jobs?'' Often, precedence constraints specify a partial order over the set of jobs and the objective is to find suitable schedules that satisfy the partial order. However, in the presence of hard deadline constraints, it may be impossible to find a schedule that satisfies all precedence constraints. In this thesis we formalize different variants of job scheduling with soft precedence constraints and conduct the first systematic study of these problems.