4 resultados para stress-based FLC

em DRUM (Digital Repository at the University of Maryland)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: New product design challenges, related to customer needs, product usage and environments, face companies when they expand their product offerings to new markets; Some of the main challenges are: the lack of quantifiable information, product experience and field data. Designing reliable products under such challenges requires flexible reliability assessment processes that can capture the variables and parameters affecting the product overall reliability and allow different design scenarios to be assessed. These challenges also suggest a mechanistic (Physics of Failure-PoF) reliability approach would be a suitable framework to be used for reliability assessment. Mechanistic Reliability recognizes the primary factors affecting design reliability. This research views the designed entity as a “system of components required to deliver specific operations”; it addresses the above mentioned challenges by; Firstly: developing a design synthesis that allows a descriptive operations/ system components relationships to be realized; Secondly: developing component’s mathematical damage models that evaluate components Time to Failure (TTF) distributions given: 1) the descriptive design model, 2) customer usage knowledge and 3) design material properties; Lastly: developing a procedure that integrates components’ damage models to assess the mechanical system’s reliability over time. Analytical and numerical simulation models were developed to capture the relationships between operations and components, the mathematical damage models and the assessment of system’s reliability. The process was able to affect the design form during the conceptual design phase by providing stress goals to meet component’s reliability target. The process was able to numerically assess the reliability of a system based on component’s mechanistic TTF distributions, besides affecting the design of the component during the design embodiment phase. The process was used to assess the reliability of an internal combustion engine manifold during design phase; results were compared to reliability field data and found to produce conservative reliability results. The research focused on mechanical systems, affected by independent mechanical failure mechanisms that are influenced by the design process. Assembly and manufacturing stresses and defects’ influences are not a focus of this research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear thermo-mechanical properties of advanced polymers are crucial to accurate prediction of the process induced warpage and residual stress of electronics packages. The Fiber Bragg grating (FBG) sensor based method is advanced and implemented to determine temperature and time dependent nonlinear properties. The FBG sensor is embedded in the center of the cylindrical specimen, which deforms together with the specimen. The strains of the specimen at different loading conditions are monitored by the FBG sensor. Two main sources of the warpage are considered: curing induced warpage and coefficient of thermal expansion (CTE) mismatch induced warpage. The effective chemical shrinkage and the equilibrium modulus are needed for the curing induced warpage prediction. Considering various polymeric materials used in microelectronic packages, unique curing setups and procedures are developed for elastomers (extremely low modulus, medium viscosity, room temperature curing), underfill materials (medium modulus, low viscosity, high temperature curing), and epoxy molding compound (EMC: high modulus, high viscosity, high temperature pressure curing), most notably, (1) zero-constraint mold for elastomers; (2) a two-stage curing procedure for underfill materials and (3) an air-cylinder based novel setup for EMC. For the CTE mismatch induced warpage, the temperature dependent CTE and the comprehensive viscoelastic properties are measured. The cured cylindrical specimen with a FBG sensor embedded in the center is further used for viscoelastic property measurements. A uni-axial compressive loading is applied to the specimen to measure the time dependent Young’s modulus. The test is repeated from room temperature to the reflow temperature to capture the time-temperature dependent Young’s modulus. A separate high pressure system is developed for the bulk modulus measurement. The time temperature dependent bulk modulus is measured at the same temperatures as the Young’s modulus. The master curve of the Young’s modulus and bulk modulus of the EMC is created and a single set of the shift factors is determined from the time temperature superposition. The supplementary experiments are conducted to verify the validity of the assumptions associated with the linear viscoelasticity. The measured time-temperature dependent properties are further verified by a shadow moiré and Twyman/Green test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecological risk assessment (ERA) is a framework for monitoring risks of exposure and adverse effects of environmental stressors to populations or communities of interest. One tool of ERA is the biomarker, which is a characteristic of an organism that reliably indicates exposure to or effects of a stressor like chemical pollution. Traditional biomarkers which rely on characteristics at the tissue level and higher often detect only acute exposures to stressors. Sensitive molecular biomarkers may detect lower stressor levels than traditional biomarkers, which helps inform risk mitigation and restoration efforts before populations and communities are irreversibly affected. In this study I developed gene expression-based molecular biomarkers of exposure to metals and insecticides in the model toxicological freshwater amphipod Hyalella azteca. My goals were to not only create sensitive molecular biomarkers for these chemicals, but also to show the utility and versatility of H. azteca in molecular studies for toxicology and risk assessment. I sequenced and assembled the H. azteca transcriptome to identify reference and stress-response gene transcripts suitable for expression monitoring. I exposed H. azteca to sub-lethal concentrations of metals (cadmium and copper) and insecticides (DDT, permethrin, and imidacloprid). Reference genes used to create normalization factors were determined for each exposure using the programs BestKeeper, GeNorm, and NormFinder. Both metals increased expression of a nuclear transcription factor (Cnc), an ABC transporter (Mrp4), and a heat shock protein (Hsp90), giving evidence of general metal exposure signature. Cadmium uniquely increased expression of a DNA repair protein (Rad51) and increased Mrp4 expression more than copper (7-fold increase compared to 2-fold increase). Together these may be unique biomarkers distinguishing cadmium and copper exposures. DDT increased expression of Hsp90, Mrp4, and the immune response gene Lgbp. Permethrin increased expression of a cytochrome P450 (Cyp2j2) and decreased expression of the immune response gene Lectin-1. Imidacloprid did not affect gene expression. Unique biomarkers were seen for DDT and permethrin, but the genes studied were not sensitive enough to detect imidacloprid at the levels used here. I demonstrated that gene expression in H. azteca detects specific chemical exposures at sub-lethal concentrations, making expression monitoring using this amphipod a useful and sensitive biomarker for risk assessment of chemical exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Picocyanobacteria are important phytoplankton and primary producers in the ocean. Although extensive work has been conducted for picocyanobacteria (i.e. Synechococcus and Prochlorococcus) in coastal and oceanic waters, little is known about those found in estuaries like the Chesapeake Bay. Synechococcus CB0101, an estuarine isolate, is more tolerant to shifts in temperature, salinity, and metal toxicity than coastal and oceanic Synechococcus strains, WH7803 and WH7805. Further, CB0101 has a greater sensitivity to high light intensity, likely due to its adaptation to low light environments. A complete and annotated genome sequence of CB0101 was completed to explore its genetic capacity and to serve as a basis for further molecular analysis. Comparative genomics between CB0101, WH7803, and WH7805 show that CB0101 contains more genes involved in regulation, sensing, and stress response. At the transcript and protein level, CB0101 regulates its metabolic pathways, transport systems, and sensing mechanisms when nitrate and phosphate are limited. Zinc toxicity led to oxidative stress and a global down regulation of photosystems and the translation machinery. From the stress response studies seven chromosomal toxin-antitoxin (TA) genes, were identified in CB0101, which led to the discovery of TA genes in several marine Synechococcus strains. The activation of the relB2/relE1 TA system allows CB0101 to arrest its growth under stressful conditions, but the growth arrest is reversible, once the stressful environment dissipates. The genome of CB0101 contains a relatively large number of genomic island (GI) genes compared to known marine Synechococcus genomes. Interestingly, a massive shutdown (255 out of 343) of GI genes occurred after CB0101 was infected by a lytic phage. On the other hand, phage-encoded host-like proteins (hli, psbA, ThyX) were highly expressed upon phage infection. This research provides new evidence that estuarine Synechococcus like CB0101 have inherited unique genetic machinery, which allows them to be versatile in the estuarine environment.