7 resultados para statistical mechanics many-body inverse problem graph-theory
em DRUM (Digital Repository at the University of Maryland)
Resumo:
In this dissertation I draw a connection between quantum adiabatic optimization, spectral graph theory, heat-diffusion, and sub-stochastic processes through the operators that govern these processes and their associated spectra. In particular, we study Hamiltonians which have recently become known as ``stoquastic'' or, equivalently, the generators of sub-stochastic processes. The operators corresponding to these Hamiltonians are of interest in all of the settings mentioned above. I predominantly explore the connection between the spectral gap of an operator, or the difference between the two lowest energies of that operator, and certain equilibrium behavior. In the context of adiabatic optimization, this corresponds to the likelihood of solving the optimization problem of interest. I will provide an instance of an optimization problem that is easy to solve classically, but leaves open the possibility to being difficult adiabatically. Aside from this concrete example, the work in this dissertation is predominantly mathematical and we focus on bounding the spectral gap. Our primary tool for doing this is spectral graph theory, which provides the most natural approach to this task by simply considering Dirichlet eigenvalues of subgraphs of host graphs. I will derive tight bounds for the gap of one-dimensional, hypercube, and general convex subgraphs. The techniques used will also adapt methods recently used by Andrews and Clutterbuck to prove the long-standing ``Fundamental Gap Conjecture''.
Resumo:
While fault-tolerant quantum computation might still be years away, analog quantum simulators offer a way to leverage current quantum technologies to study classically intractable quantum systems. Cutting edge quantum simulators such as those utilizing ultracold atoms are beginning to study physics which surpass what is classically tractable. As the system sizes of these quantum simulators increase, there are also concurrent gains in the complexity and types of Hamiltonians which can be simulated. In this work, I describe advances toward the realization of an adaptable, tunable quantum simulator capable of surpassing classical computation. We simulate long-ranged Ising and XY spin models which can have global arbitrary transverse and longitudinal fields in addition to individual transverse fields using a linear chain of up to 24 Yb+ 171 ions confined in a linear rf Paul trap. Each qubit is encoded in the ground state hyperfine levels of an ion. Spin-spin interactions are engineered by the application of spin-dependent forces from laser fields, coupling spin to motion. Each spin can be read independently using state-dependent fluorescence. The results here add yet more tools to an ever growing quantum simulation toolbox. One of many challenges has been the coherent manipulation of individual qubits. By using a surprisingly large fourth-order Stark shifts in a clock-state qubit, we demonstrate an ability to individually manipulate spins and apply independent Hamiltonian terms, greatly increasing the range of quantum simulations which can be implemented. As quantum systems grow beyond the capability of classical numerics, a constant question is how to verify a quantum simulation. Here, I present measurements which may provide useful metrics for large system sizes and demonstrate them in a system of up to 24 ions during a classically intractable simulation. The observed values are consistent with extremely large entangled states, as much as ~95% of the system entangled. Finally, we use many of these techniques in order to generate a spin Hamiltonian which fails to thermalize during experimental time scales due to a meta-stable state which is often called prethermal. The observed prethermal state is a new form of prethermalization which arises due to long-range interactions and open boundary conditions, even in the thermodynamic limit. This prethermalization is observed in a system of up to 22 spins. We expect that system sizes can be extended up to 30 spins with only minor upgrades to the current apparatus. These results emphasize that as the technology improves, the techniques and tools developed here can potentially be used to perform simulations which will surpass the capability of even the most sophisticated classical techniques, enabling the study of a whole new regime of quantum many-body physics.
Resumo:
In a microscopic setting, humans behave in rich and unexpected ways. In a macroscopic setting, however, distinctive patterns of group behavior emerge, leading statistical physicists to search for an underlying mechanism. The aim of this dissertation is to analyze the macroscopic patterns of competing ideas in order to discern the mechanics of how group opinions form at the microscopic level. First, we explore the competition of answers in online Q&A (question and answer) boards. We find that a simple individual-level model can capture important features of user behavior, especially as the number of answers to a question grows. Our model further suggests that the wisdom of crowds may be constrained by information overload, in which users are unable to thoroughly evaluate each answer and therefore tend to use heuristics to pick what they believe is the best answer. Next, we explore models of opinion spread among voters to explain observed universal statistical patterns such as rescaled vote distributions and logarithmic vote correlations. We introduce a simple model that can explain both properties, as well as why it takes so long for large groups to reach consensus. An important feature of the model that facilitates agreement with data is that individuals become more stubborn (unwilling to change their opinion) over time. Finally, we explore potential underlying mechanisms for opinion formation in juries, by comparing data to various types of models. We find that different null hypotheses in which jurors do not interact when reaching a decision are in strong disagreement with data compared to a simple interaction model. These findings provide conceptual and mechanistic support for previous work that has found mutual influence can play a large role in group decisions. In addition, by matching our models to data, we are able to infer the time scales over which individuals change their opinions for different jury contexts. We find that these values increase as a function of the trial time, suggesting that jurors and judicial panels exhibit a kind of stubbornness similar to what we include in our model of voting behavior.
Resumo:
This thesis proves certain results concerning an important question in non-equilibrium quantum statistical mechanics which is the derivation of effective evolution equations approximating the dynamics of a system of large number of bosons initially at equilibrium (ground state at very low temperatures). The dynamics of such systems are governed by the time-dependent linear many-body Schroedinger equation from which it is typically difficult to extract useful information due to the number of particles being large. We will study quantitatively (i.e. with explicit bounds on the error) how a suitable one particle non-linear Schroedinger equation arises in the mean field limit as number of particles N → ∞ and how the appropriate corrections to the mean field will provide better approximations of the exact dynamics. In the first part of this thesis we consider the evolution of N bosons, where N is large, with two-body interactions of the form N³ᵝv(Nᵝ⋅), 0≤β≤1. The parameter β measures the strength and the range of interactions. We compare the exact evolution with an approximation which considers the evolution of a mean field coupled with an appropriate description of pair excitations, see [18,19] by Grillakis-Machedon-Margetis. We extend the results for 0 ≤ β < 1/3 in [19, 20] to the case of β < 1/2 and obtain an error bound of the form p(t)/Nᵅ, where α>0 and p(t) is a polynomial, which implies a specific rate of convergence as N → ∞. In the second part, utilizing estimates of the type discussed in the first part, we compare the exact evolution with the mean field approximation in the sense of marginals. We prove that the exact evolution is close to the approximate in trace norm for times of the order o(1)√N compared to log(o(1)N) as obtained in Chen-Lee-Schlein [6] for the Hartree evolution. Estimates of similar type are obtained for stronger interactions as well.
Resumo:
A primary goal of this dissertation is to understand the links between mathematical models that describe crystal surfaces at three fundamental length scales: The scale of individual atoms, the scale of collections of atoms forming crystal defects, and macroscopic scale. Characterizing connections between different classes of models is a critical task for gaining insight into the physics they describe, a long-standing objective in applied analysis, and also highly relevant in engineering applications. The key concept I use in each problem addressed in this thesis is coarse graining, which is a strategy for connecting fine representations or models with coarser representations. Often this idea is invoked to reduce a large discrete system to an appropriate continuum description, e.g. individual particles are represented by a continuous density. While there is no general theory of coarse graining, one closely related mathematical approach is asymptotic analysis, i.e. the description of limiting behavior as some parameter becomes very large or very small. In the case of crystalline solids, it is natural to consider cases where the number of particles is large or where the lattice spacing is small. Limits such as these often make explicit the nature of links between models capturing different scales, and, once established, provide a means of improving our understanding, or the models themselves. Finding appropriate variables whose limits illustrate the important connections between models is no easy task, however. This is one area where computer simulation is extremely helpful, as it allows us to see the results of complex dynamics and gather clues regarding the roles of different physical quantities. On the other hand, connections between models enable the development of novel multiscale computational schemes, so understanding can assist computation and vice versa. Some of these ideas are demonstrated in this thesis. The important outcomes of this thesis include: (1) a systematic derivation of the step-flow model of Burton, Cabrera, and Frank, with corrections, from an atomistic solid-on-solid-type models in 1+1 dimensions; (2) the inclusion of an atomistically motivated transport mechanism in an island dynamics model allowing for a more detailed account of mound evolution; and (3) the development of a hybrid discrete-continuum scheme for simulating the relaxation of a faceted crystal mound. Central to all of these modeling and simulation efforts is the presence of steps composed of individual layers of atoms on vicinal crystal surfaces. Consequently, a recurring theme in this research is the observation that mesoscale defects play a crucial role in crystal morphological evolution.
Resumo:
I examine determinants of refugee return after conflicts. I argue that institutional constraints placed on the executive provide a credible commitment that signals to refugees that the conditions required for durable return will be created. This results in increased return flows for refugees. Further, when credible commitments are stronger in the country of origin than in the country of asylum, the level of return increases. Finally, I find that specific commitments made to refugees in the peace agreement do not lead to increased return because they are not credible without institutional constraints. Using data on returnees that has only recently been made available, along with network analysis and an original coding of the provisions in refugee agreements, statistical results are found to support this theory. An examination of cases in Djibouti, Sierra Leone, and Liberia provides additional support for this argument.
Resumo:
Experiments with ultracold atoms in optical lattice have become a versatile testing ground to study diverse quantum many-body Hamiltonians. A single-band Bose-Hubbard (BH) Hamiltonian was first proposed to describe these systems in 1998 and its associated quantum phase-transition was subsequently observed in 2002. Over the years, there has been a rapid progress in experimental realizations of more complex lattice geometries, leading to more exotic BH Hamiltonians with contributions from excited bands, and modified tunneling and interaction energies. There has also been interesting theoretical insights and experimental studies on “un- conventional” Bose-Einstein condensates in optical lattices and predictions of rich orbital physics in higher bands. In this thesis, I present our results on several multi- band BH models and emergent quantum phenomena. In particular, I study optical lattices with two local minima per unit cell and show that the low energy states of a multi-band BH Hamiltonian with only pairwise interactions is equivalent to an effec- tive single-band Hamiltonian with strong three-body interactions. I also propose a second method to create three-body interactions in ultracold gases of bosonic atoms in a optical lattice. In this case, this is achieved by a careful cancellation of two contributions in the pair-wise interaction between the atoms, one proportional to the zero-energy scattering length and a second proportional to the effective range. I subsequently study the physics of Bose-Einstein condensation in the second band of a double-well 2D lattice and show that the collision aided decay rate of the con- densate to the ground band is smaller than the tunneling rate between neighboring unit cells. Finally, I propose a numerical method using the discrete variable repre- sentation for constructing real-valued Wannier functions localized in a unit cell for optical lattices. The developed numerical method is general and can be applied to a wide array of optical lattice geometries in one, two or three dimensions.