3 resultados para stacks and batteries

em DRUM (Digital Repository at the University of Maryland)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A solid state lithium metal battery based on a lithium garnet material was developed, constructed and tested. Specifically, a porous-dense-porous trilayer structure was fabricated by tape casting, a roll-to-roll technique conducive to high volume manufacturing. The high density and thin center layer (< 20 μm) effectively blocks dendrites even over hundreds of cycles. The microstructured porous layers, serving as electrode supports, are demonstrated to increase the interfacial surface area available to the electrodes and increase cathode loading. Reproducibility of flat, well sintered ceramics was achieved with consistent powderbed lattice parameter and ball milling of powderbed. Together, the resistance of the LLCZN trilayer was measured at an average of 7.6 ohm-cm2 in a symmetric lithium cell, significantly lower than any other reported literature results. Building on these results, a full cell with a lithium metal anode, LLCZN trilayer electrolyte, and LiCoO2 cathode was cycled 100 cycles without decay and an average ASR of 117 ohm-cm2. After cycling, the cell was held at open circuit for 24 hours without any voltage fade, demonstrating the absence of a dendrite or short-circuit of any type. Cost calculations guided the optimization of a trilayer structure predicted that resulting cells will be highly competitive in the marketplace as intrinsically safe lithium batteries with energy densities greater than 300 Wh/kg and 1000 Wh/L for under $100/kWh. Also in the pursuit of solid state batteries, an improved Na+ superionic conductor (NASICON) composition, Na3Zr2Si2PO12, was developed with a conductivity of 1.9x10-3 S/cm. New super-lithiated lithium garnet compositions, Li7.06La3Zr1.94Y0.06O12 and Li7.16La3Zr1.84Y0.16O12, were developed and studied revealing insights about the mechanisms of conductivity in lithium garnets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flapping Wing Aerial Vehicles (FWAVs) have the capability to combine the benefits of both fixed wing vehicles and rotary vehicles. However, flight time is limited due to limited on-board energy storage capacity. For most Unmanned Aerial Vehicle (UAV) operators, frequent recharging of the batteries is not ideal due to lack of nearby electrical outlets. This imposes serious limitations on FWAV flights. The approach taken to extend the flight time of UAVs was to integrate photovoltaic solar cells onto different structures of the vehicle to harvest and use energy from the sun. Integration of the solar cells can greatly improve the energy capacity of an UAV; however, this integration does effect the performance of the UAV and especially FWAVs. The integration of solar cells affects the ability of the vehicle to produce the aerodynamic forces necessary to maintain flight. This PhD dissertation characterizes the effects of solar cell integration on the performance of a FWAV. Robo Raven, a recently developed FWAV, is used as the platform for this work. An additive manufacturing technique was developed to integrate photovoltaic solar cells into the wing and tail structures of the vehicle. An approach to characterizing the effects of solar cell integration to the wings, tail, and body of the UAV is also described. This approach includes measurement of aerodynamic forces generated by the vehicle and measurements of the wing shape during the flapping cycle using Digital Image Correlation. Various changes to wing, body, and tail design are investigated and changes in performance for each design are measured. The electrical performance from the solar cells is also characterized. A new multifunctional performance model was formulated that describes how integration of solar cells influences the flight performance. Aerodynamic models were developed to describe effects of solar cell integration force production and performance of the FWAV. Thus, performance changes can be predicted depending on changes in design. Sensing capabilities of the solar cells were also discovered and correlated to the deformation of the wing. This demonstrated that the solar cells were capable of: (1) Lightweight and flexible structure to generate aerodynamic forces, (2) Energy harvesting to extend operational time and autonomy, (3) Sensing of an aerodynamic force associated with wing deformation. Finally, different flexible photovoltaic materials with higher efficiencies are investigated, which enable the multifunctional wings to provide enough solar power to keep the FWAV aloft without batteries as long as there is enough sunlight to power the vehicle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renewable energy technologies have long-term economic and environmental advantages over fossil fuels, and solar power is the most abundant renewable resource, supplying 120 PW over earth’s surface. In recent years the cost of photovoltaic modules has reached grid parity in many areas of the world, including much of the USA. A combination of economic and environmental factors has encouraged the adoption of solar technology and led to an annual growth rate in photovoltaic capacity of 76% in the US between 2010 and 2014. Despite the enormous growth of the solar energy industry, commercial unit efficiencies are still far below their theoretical limits. A push for thinner cells may reduce device cost and could potentially increase device performance. Fabricating thinner cells reduces bulk recombination, but at the cost of absorbing less light. This tradeoff generally benefits thinner devices due to reduced recombination. The effect continues up to a maximum efficiency where the benefit of reduced recombination is overwhelmed by the suppressed absorption. Light trapping allows the solar cell to circumvent this limitation and realize further performance gains (as well as continue cost reduction) from decreasing the device thickness. This thesis presents several advances in experimental characterization, theoretical modeling, and device applications for light trapping in thin-film solar cells. We begin by introducing light trapping strategies and discuss theoretical limits of light trapping in solar cells. This is followed by an overview of the equipment developed for light trapping characterization. Next we discuss our recent work measuring internal light scattering and a new model of scattering to predict the effects of dielectric nanoparticle back scatterers on thin-film device absorption. The new model is extended and generalized to arbitrary stacks of stratified media containing scattering structures. Finally, we investigate an application of these techniques using polymer dispersed liquid crystals to produce switchable solar windows. We show that these devices have the potential for self-powering.