2 resultados para spectral methods
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Experimental geophysical fluid dynamics often examines regimes of fluid flow infeasible for computer simulations. Velocimetry of zonal flows present in these regimes brings many challenges when the fluid is opaque and vigorously rotating; spherical Couette flows with molten metals are one such example. The fine structure of the acoustic spectrum can be related to the fluid’s velocity field, and inverse spectral methods can be used to predict and, with sufficient acoustic data, mathematically reconstruct the velocity field. The methods are to some extent inherited from helioseismology. This work develops a Finite Element Method suitable to matching the geometries of experimental setups, as well as modelling the acoustics based on that geometry and zonal flows therein. As an application, this work uses the 60-cm setup Dynamo 3.5 at the University of Maryland Nonlinear Dynamics Laboratory. Additionally, results obtained using a small acoustic data set from recent experiments in air are provided.
Resumo:
In this dissertation I draw a connection between quantum adiabatic optimization, spectral graph theory, heat-diffusion, and sub-stochastic processes through the operators that govern these processes and their associated spectra. In particular, we study Hamiltonians which have recently become known as ``stoquastic'' or, equivalently, the generators of sub-stochastic processes. The operators corresponding to these Hamiltonians are of interest in all of the settings mentioned above. I predominantly explore the connection between the spectral gap of an operator, or the difference between the two lowest energies of that operator, and certain equilibrium behavior. In the context of adiabatic optimization, this corresponds to the likelihood of solving the optimization problem of interest. I will provide an instance of an optimization problem that is easy to solve classically, but leaves open the possibility to being difficult adiabatically. Aside from this concrete example, the work in this dissertation is predominantly mathematical and we focus on bounding the spectral gap. Our primary tool for doing this is spectral graph theory, which provides the most natural approach to this task by simply considering Dirichlet eigenvalues of subgraphs of host graphs. I will derive tight bounds for the gap of one-dimensional, hypercube, and general convex subgraphs. The techniques used will also adapt methods recently used by Andrews and Clutterbuck to prove the long-standing ``Fundamental Gap Conjecture''.