3 resultados para social motivation
em DRUM (Digital Repository at the University of Maryland)
Resumo:
From birth, infants preferentially attend to human motion, which allows them to learn to interpret other peoples’ facial expressions and mental states. Evidence from adults shows that selectivity of the amygdala and the posterior superior temporal sulcus (pSTS) to biological motion correlates with social network size. Social motivation—one’s desire to orient to the social world, to seek and find reward in social interaction, and to maintain social relationships—may also contribute to neural specialization for biological motion and to social network characteristics. The current study aimed to determine whether neural selectivity for biological motion relates to social network characteristics, and to gain preliminary evidence as to whether social motivation plays a role in this relation. Findings suggest that neural selectivity for biological motion in the pSTS is positively related to social network size in middle childhood and that this relation is moderated by social motivation.
Resumo:
Children develop in a sea of reciprocal social interaction, but their brain development is predominately studied in non-interactive contexts (e.g., viewing photographs of faces). This dissertation investigated how the developing brain supports social interaction. Specifically, novel paradigms were used to target two facets of social experience—social communication and social motivation—across three studies in children and adults. In Study 1, adults listened to short vignettes—which contained no social information—that they believed to be either prerecorded or presented over an audio-feed by a live social partner. Simply believing that speech was from a live social partner increased activation in the brain’s mentalizing network—a network involved in thinking about others’ thoughts. Study 2 extended this paradigm to middle childhood, a time of increasing social competence and social network complexity, as well as structural and functional social brain development. Results showed that, as in adults, regions of the mentalizing network were engaged by live speech. Taken together, these findings indicate that the mentalizing network may support the processing of interactive communicative cues across development. Given this established importance of social-interactive context, Study 3 examined children’s social motivation when they believed they were engaged in a computer-based chat with a peer. Children initiated interaction via sharing information about their likes and hobbies and received responses from the peer. Compared to a non-social control, in which children chatted with a computer, peer interaction increased activation in mentalizing regions and reward circuitry. Further, within mentalizing regions, responsivity to the peer increased with age. Thus, across all three studies, social cognitive regions associated with mentalizing supported real-time social interaction. In contrast, the specific social context appeared to influence both reward circuitry involvement and age-related changes in neural activity. Future studies should continue to examine how the brain supports interaction across varied real-world social contexts. In addition to illuminating typical development, understanding the neural bases of interaction will offer insight into social disabilities such as autism, where social difficulties are often most acute in interactive situations. Ultimately, to best capture human experience, social neuroscience ought to be embedded in the social world.
Resumo:
Negative symptoms in schizophrenia are characterized by deficits in normative experiences and expression of emotion. Social anhedonia (diminished pleasure from social experiences) is one negative symptom that may impact patients’ motivation to engage in meaningful social relationships. Past research has begun to examine the mechanisms that underlie social anhedonia, but it is unclear how this lack of social interest may impact the typically positive effects of social buffering and social baseline theory whereby social support attenuates stress. The present pilot study examines how social affiliation through hand holding is related to subjective and neural threat processing, negative symptoms, and social functioning. Twenty-one participants (14 controls; 7 schizophrenia) developed social affiliation with a member of the research staff who served as the supportive partner during the threat task. Participants displayed greater subjective benefit to holding the hand of their partner during times of stress relative to being alone or with an anonymous experimenter, as indicated by self-reported increased positive valence and decreased arousal ratings. When examining the effects of group, hand holding, and their interaction on the neurological experience of threat during the fMRI task, the results were not significant. However, exploratory analyses identified preliminary data suggesting that controls experienced small relative increases in BOLD signal to threat when alone compared to being with the anonymous experimenter or their partner, whereas the schizophrenia group results indicated subtle relative decreases in BOLD signal to threat when alone compared to either of the hand holding conditions. Additionally, within the schizophrenia group, more positive valence in the partner condition was associated with less severe negative symptoms, better social functioning, and more social affiliation, whereas less arousal was correlated with more social affiliation. Our pilot study offers initial insights about the difficulties of building and using social affiliation and support through hand holding with individuals with schizophrenia during times of stress. Further research is necessary to clarify which types of support may be more or less beneficial to individuals with schizophrenia who may experience social anhedonia or paranoia with others that may challenge the otherwise positive effects of social buffering and maintaining a social baseline.