4 resultados para social media analytics
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Prior research shows that electronic word of mouth (eWOM) wields considerable influence over consumer behavior. However, as the volume and variety of eWOM grows, firms are faced with challenges in analyzing and responding to this information. In this dissertation, I argue that to meet the new challenges and opportunities posed by the expansion of eWOM and to more accurately measure its impacts on firms and consumers, we need to revisit our methodologies for extracting insights from eWOM. This dissertation consists of three essays that further our understanding of the value of social media analytics, especially with respect to eWOM. In the first essay, I use machine learning techniques to extract semantic structure from online reviews. These semantic dimensions describe the experiences of consumers in the service industry more accurately than traditional numerical variables. To demonstrate the value of these dimensions, I show that they can be used to substantially improve the accuracy of econometric models of firm survival. In the second essay, I explore the effects on eWOM of online deals, such as those offered by Groupon, the value of which to both consumers and merchants is controversial. Through a combination of Bayesian econometric models and controlled lab experiments, I examine the conditions under which online deals affect online reviews and provide strategies to mitigate the potential negative eWOM effects resulting from online deals. In the third essay, I focus on how eWOM can be incorporated into efforts to reduce foodborne illness, a major public health concern. I demonstrate how machine learning techniques can be used to monitor hygiene in restaurants through crowd-sourced online reviews. I am able to identify instances of moral hazard within the hygiene inspection scheme used in New York City by leveraging a dictionary specifically crafted for this purpose. To the extent that online reviews provide some visibility into the hygiene practices of restaurants, I show how losses from information asymmetry may be partially mitigated in this context. Taken together, this dissertation contributes by revisiting and refining the use of eWOM in the service sector through a combination of machine learning and econometric methodologies.
Resumo:
While a variety of crisis types loom as real risks for organizations and communities, and the media landscape continues to evolve, research is needed to help explain and predict how people respond to various kinds of crisis and disaster information. For example, despite the rising prevalence of digital and mobile media centered on still and moving visuals, and stark increases in Americans’ use of visual-based platforms for seeking and sharing disaster information, relatively little is known about how the presence or absence of disaster visuals online might prompt or deter resilience-related feelings, thoughts, and/or behaviors. Yet, with such insights, governmental and other organizational entities as well as communities themselves may best help individuals and communities prepare for, cope with, and recover from adverse events. Thus, this work uses the theoretical lens of the social-mediated crisis communication model (SMCC) coupled with the limited capacity model of motivated mediated message processing (LC4MP) to explore effects of disaster information source and visuals on viewers’ resilience-related responses to an extreme flooding scenario. Results from two experiments are reported. First a preliminary 2 (disaster information source: organization/US National Weather Service vs. news media/USA Today) x 2 (disaster visuals: no visual podcast vs. moving visual video) factorial between-subjects online experiment with a convenience sample of university students probes effects of crisis source and visuals on a variety of cognitive, affective, and behavioral outcomes. A second between-subjects online experiment manipulating still and moving visual pace in online videos (no visual vs. still, slow-pace visual vs. still, medium-pace visual vs. still, fast-pace visual vs. moving, slow-pace visual vs. moving, medium-pace visual vs. moving, fast-pace visual) with a convenience sample recruited from Amazon’s Mechanical Turk (mTurk) similarly probes a variety of potentially resilience-related cognitive, affective, and behavioral outcomes. The role of biological sex as a quasi-experimental variable is also investigated in both studies. Various implications for community resilience and recommendations for risk and disaster communicators are explored. Implications for theory building and future research are also examined. Resulting modifications of the SMCC model (i.e., removing “message strategy” and adding the new category of “message content elements” under organizational considerations) are proposed.
Resumo:
In November 2015-March 2016, I assigned my Graduate Assistant, David Durden, a project to compile usage statistics and trends for digitized collections between 2013-2015 from UMD Digital Collections and our contributions to the Internet Archive between 2008-2015. The original intent of the project was to provide usage metrics to assist the Digitization Initiatives Committee in prioritizing projects or content areas. The project also uncovered trends that should impact how we think about making digital collections discoverable and accessible. For example, if 50-60% of traffic into UMD Digital Collections comes from outside the University or College Park, MD, how will this impact the potential usage of content when access is restricted to campus due to licensing, copyright, or ownership restrictions? With a growing population using mobile browsers, how will a flash-based viewer restrict users’ access to content? How might we develop content or its discoverability for a growing social media user base? In this talk, I will briefly discuss the usage trends for the represented collections, how we may use these in prioritizing future projects, and issues I will discuss with collection managers as we develop project plans and the Manager of Digital Programs and Initiatives as we develop the digital collections repository.
Resumo:
This dissertation examines the role that music has played in the expression of identity and revitalization of culture of the Alevis in Turkey, since the start of their sociocultural revival movement in the late 1980s. Music is central to Alevi claims of ethnic and religious difference—singing and playing the bağlama (Turkish folk lute) constitutes an expressive practice in worship and everyday life. Based on research conducted from 2012 to 2014, I investigate and present Alevi music through the lens of discourses on the construction of identity as a social and musical process. Alevi musicians perform a revived repertoire of the ritual music and folk songs of Anatolian bards and dervish-lodge poets that developed over several centuries. Contemporary media and performance contexts have blurred former distinctions between sacred and secular, yet have provided new avenues to build community in an urban setting. I compare music performances in the worship services of urban and small-town areas, and other community events such as devotional meetings, concerts, clubs, and broadcast and social media to illustrate the ways that participation—both performing and listening—reinforces identity and solidarity. I also examine the influence of these different contexts on performers’ musical choices, and the power of music to evoke a range of responses and emotional feelings in the participants. Through my investigation I argue that the Alevi music repertoire is not only a cultural practice but also a symbol of power and collective action in their struggle for human rights and self-determination. As Alevis have faced a redefined Turkish nationalism that incorporates Sunni Muslim piety, this music has gained even greater potency in their resistance to misrecognition as a folkloric, rather than a living, tradition.