4 resultados para sinus node, pacemaking, 3D anatomical model, arrhythmias
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The performance, energy efficiency and cost improvements due to traditional technology scaling have begun to slow down and present diminishing returns. Underlying reasons for this trend include fundamental physical limits of transistor scaling, the growing significance of quantum effects as transistors shrink, and a growing mismatch between transistors and interconnects regarding size, speed and power. Continued Moore's Law scaling will not come from technology scaling alone, and must involve improvements to design tools and development of new disruptive technologies such as 3D integration. 3D integration presents potential improvements to interconnect power and delay by translating the routing problem into a third dimension, and facilitates transistor density scaling independent of technology node. Furthermore, 3D IC technology opens up a new architectural design space of heterogeneously-integrated high-bandwidth CPUs. Vertical integration promises to provide the CPU architectures of the future by integrating high performance processors with on-chip high-bandwidth memory systems and highly connected network-on-chip structures. Such techniques can overcome the well-known CPU performance bottlenecks referred to as memory and communication wall. However the promising improvements to performance and energy efficiency offered by 3D CPUs does not come without cost, both in the financial investments to develop the technology, and the increased complexity of design. Two main limitations to 3D IC technology have been heat removal and TSV reliability. Transistor stacking creates increases in power density, current density and thermal resistance in air cooled packages. Furthermore the technology introduces vertical through silicon vias (TSVs) that create new points of failure in the chip and require development of new BEOL technologies. Although these issues can be controlled to some extent using thermal-reliability aware physical and architectural 3D design techniques, high performance embedded cooling schemes, such as micro-fluidic (MF) cooling, are fundamentally necessary to unlock the true potential of 3D ICs. A new paradigm is being put forth which integrates the computational, electrical, physical, thermal and reliability views of a system. The unification of these diverse aspects of integrated circuits is called Co-Design. Independent design and optimization of each aspect leads to sub-optimal designs due to a lack of understanding of cross-domain interactions and their impacts on the feasibility region of the architectural design space. Co-Design enables optimization across layers with a multi-domain view and thus unlocks new high-performance and energy efficient configurations. Although the co-design paradigm is becoming increasingly necessary in all fields of IC design, it is even more critical in 3D ICs where, as we show, the inter-layer coupling and higher degree of connectivity between components exacerbates the interdependence between architectural parameters, physical design parameters and the multitude of metrics of interest to the designer (i.e. power, performance, temperature and reliability). In this dissertation we present a framework for multi-domain co-simulation and co-optimization of 3D CPU architectures with both air and MF cooling solutions. Finally we propose an approach for design space exploration and modeling within the new Co-Design paradigm, and discuss the possible avenues for improvement of this work in the future.
Resumo:
In Fall 2015, the Engineering and Physical Science Library (EPSL) began lending anatomical models as part of its course reserves program. EPSL received a partial skeleton and two muscle model figures from instructors of BSCI105. These models circulate for 4 hours at a time and are generally used by small, collaborative groups of students in the library. This poster will look at the challenges and rewards for adding these items to EPSL’s course reserves.
Resumo:
The thesis uses a three-dimensional, first-principles model of the ionosphere in combination with High Frequency (HF) raytracing model to address key topics related to the physics of HF propagation and artificial ionospheric heating. In particular: 1. Explores the effect of the ubiquitous electron density gradients caused by Medium Scale Traveling Ionospheric Disturbances (MSTIDs) on high-angle of incidence HF radio wave propagation. Previous studies neglected the all-important presence of horizontal gradients in both the cross- and down-range directions, which refract the HF waves, significantly changing their path through the ionosphere. The physics-based ionosphere model SAMI3/ESF is used to generate a self-consistently evolving MSTID that allows for the examination of the spatio-temporal progression of the HF radio waves in the ionosphere. 2. Tests the potential and determines engineering requirements for ground- based high power HF heaters to trigger and control the evolution of Equatorial Spread F (ESF). Interference from ESF on radio wave propagation through the ionosphere remains a critical issue on HF systems reliability. Artificial HF heating has been shown to create plasma density cavities in the ionosphere similar to those that may trigger ESF bubbles. The work explores whether HF heating may trigger or control ESF bubbles. 3. Uses the combined ionosphere and HF raytracing models to create the first self-consistent HF Heating model. This model is utilized to simulate results from an Arecibo experiment and to provide understanding of the physical mechanism behind observed phenomena. The insights gained provide engineering guidance for new artificial heaters that are being built for use in low to middle latitude regions. In accomplishing the above topics: (i) I generated a model MSTID using the SAMI3/ESF code, and used a raytrace model to examine the effects of the MSTID gradients on radio wave propagation observables; (ii) I implemented a three- dimensional HF heating model in SAMI3/ESF and used the model to determine whether HF heating could artificially generate an ESF bubble; (iii) I created the first self-consistent model for artificial HF heating using the SAMI3/ESF ionosphere model and the MoJo raytrace model and ran a series of simulations that successfully modeled the results of early artificial heating experiments at Arecibo.
Resumo:
As the semiconductor industry struggles to maintain its momentum down the path following the Moore's Law, three dimensional integrated circuit (3D IC) technology has emerged as a promising solution to achieve higher integration density, better performance, and lower power consumption. However, despite its significant improvement in electrical performance, 3D IC presents several serious physical design challenges. In this dissertation, we investigate physical design methodologies for 3D ICs with primary focus on two areas: low power 3D clock tree design, and reliability degradation modeling and management. Clock trees are essential parts for digital system which dissipate a large amount of power due to high capacitive loads. The majority of existing 3D clock tree designs focus on minimizing the total wire length, which produces sub-optimal results for power optimization. In this dissertation, we formulate a 3D clock tree design flow which directly optimizes for clock power. Besides, we also investigate the design methodology for clock gating a 3D clock tree, which uses shutdown gates to selectively turn off unnecessary clock activities. Different from the common assumption in 2D ICs that shutdown gates are cheap thus can be applied at every clock node, shutdown gates in 3D ICs introduce additional control TSVs, which compete with clock TSVs for placement resources. We explore the design methodologies to produce the optimal allocation and placement for clock and control TSVs so that the clock power is minimized. We show that the proposed synthesis flow saves significant clock power while accounting for available TSV placement area. Vertical integration also brings new reliability challenges including TSV's electromigration (EM) and several other reliability loss mechanisms caused by TSV-induced stress. These reliability loss models involve complex inter-dependencies between electrical and thermal conditions, which have not been investigated in the past. In this dissertation we set up an electrical/thermal/reliability co-simulation framework to capture the transient of reliability loss in 3D ICs. We further derive and validate an analytical reliability objective function that can be integrated into the 3D placement design flow. The reliability aware placement scheme enables co-design and co-optimization of both the electrical and reliability property, thus improves both the circuit's performance and its lifetime. Our electrical/reliability co-design scheme avoids unnecessary design cycles or application of ad-hoc fixes that lead to sub-optimal performance. Vertical integration also enables stacking DRAM on top of CPU, providing high bandwidth and short latency. However, non-uniform voltage fluctuation and local thermal hotspot in CPU layers are coupled into DRAM layers, causing a non-uniform bit-cell leakage (thereby bit flip) distribution. We propose a performance-power-resilience simulation framework to capture DRAM soft error in 3D multi-core CPU systems. In addition, a dynamic resilience management (DRM) scheme is investigated, which adaptively tunes CPU's operating points to adjust DRAM's voltage noise and thermal condition during runtime. The DRM uses dynamic frequency scaling to achieve a resilience borrow-in strategy, which effectively enhances DRAM's resilience without sacrificing performance. The proposed physical design methodologies should act as important building blocks for 3D ICs and push 3D ICs toward mainstream acceptance in the near future.