5 resultados para single-case designs

em DRUM (Digital Repository at the University of Maryland)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Students often receive instruction from specialists, professionals other than their general educators, such as special educators, reading specialists, and ESOL (English Speakers of Other Languages) teachers. The purpose of this study was to examine how general educators and specialists develop collaborative relationships over time within the context of receiving professional development. While collaboration is considered essential to increasing student achievement, improving teachers’ practice, and creating comprehensive school reform, collaborative partnerships take time to develop and require multiple sources of support. Additionally, both practitioners and researchers often conflate collaboration with structural reforms such as co-teaching. This study used a retrospective single case study with a grounded theory approach to analysis. Data were collected through semi-structured interviews with thirteen teachers and an administrator after three workshops were conducted throughout the school year. The theory, Cultivating Interprofessional Collaboration, describes how interprofessional relationships grow as teachers engage in a cycle of learning, constructing partnership, and reflecting. As relationships deepen some partners experience a seamless dimension to their work. A variety of intrapersonal, interpersonal, and external factors work in concert to promote this growth, which is strengthened through professional development. In this theory, professional development provides a common ground for strengthening relationships, knowledge about the collaborative process, and a reflective space to create new collaborative practices. Effective collaborative practice can lead to aligned instruction and teachers’ own professional growth. This study has implications for school interventions, professional development, and future research on collaboration in schools.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to investigate the nature of the relationship between middle school science learners’ conditions and their developing understandings of climate change. I applied the anthropological theoretical perspective of figured worlds (Holland, Lachicotte, Skinner, & Cain, 1998) to examine learners’ views of themselves and their capacities to act in relation to climate change. My overarching research question was: How are middle school science learners’ figured worlds of climate change related to the conditions in which they are embedded? I used a descriptive single-case study design to examine the climate change ideas of eight purposefully selected 6th grade science learners. Data sources included: classroom observations, curriculum documents, interviews, focus groups, and written assessments and artifacts, including learners’ self- generated drawings. I identified six analytic lenses with which to explore the data. Insights from the application of these analytic lenses provided information about the elements of participants’ climate change stories, which I reported through the use of a storytelling heuristic. I then synthesized elements of participants’ collective climate change story, which provided an “entrance” (Kitchell, Hannan, & Kempton, 2000, p. 96) into their figured world of climate change. Aspects of learners’ conditions—such as their worlds of school, technology and media use, and family—appeared to shape their figured world of climate change. Within their figured world of climate change, learners saw themselves—individually and as members of groups—as inhabiting a variety of climate change identities, some of which were in conflict with each other. I posited that learners’ enactment of these identities – or the ways in which they expressed their climate change agency – had the potential to reshape or reinforce their conditions. Thus, learners’ figured worlds of climate change might be considered “spaces of authoring” (Holland et al., 1998, p. 45) with potential for inciting social and environmental change. The nature of such change would hinge on the extent to which these nascent climate change identities become salient for these early adolescent learners through their continued climate change learning experiences. Implications for policy, curriculum and instruction, and science education research related to climate change education are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last decade, rapid development of additive manufacturing techniques has allowed the fabrication of innovative and complex designs. One field that can benefit from such technology is heat exchanger fabrication, as heat exchanger design has become more and more complex due to the demand for higher performance particularly on the air side of the heat exchanger. By employing the additive manufacturing, a heat exchanger design was successfully realized, which otherwise would have been very difficult to fabricate using conventional fabrication technologies. In this dissertation, additive manufacturing technique was implemented to fabricate an advanced design which focused on a combination of heat transfer surface and fluid distribution system. Although the application selected in this dissertation is focused on power plant dry cooling applications, the results of this study can directly and indirectly benefit other sectors as well, as the air-side is often the limiting side for in liquid or single phase cooling applications. Two heat exchanger designs were studied. One was an advanced metallic heat exchanger based on manifold-microchannel technology and the other was a polymer heat exchanger based on utilization of prime surface technology. Polymer heat exchangers offer several advantages over metals such as antifouling, anticorrosion, lightweight and often less expensive than comparable metallic heat exchangers. A numerical modeling and optimization were performed to calculate a design that yield an optimum performance. The optimization results show that significant performance enhancement is noted compared to the conventional heat exchangers like wavy fins and plain plate fins. Thereafter, both heat exchangers were scaled down and fabricated using additive manufacturing and experimentally tested. The manifold-micro channel design demonstrated that despite some fabrication inaccuracies, compared to a conventional wavy-fin surface, 15% - 50% increase in heat transfer coefficient was possible for the same pressure drop value. In addition, if the fabrication inaccuracy can be eliminated, an even larger performance enhancement is predicted. Since metal based additive manufacturing is still in the developmental stage, it is anticipated that with further refinement of the manufacturing process in future designs, the fabrication accuracy can be improved. For the polymer heat exchanger, by fabricating a very thin wall heat exchanger (150μm), the wall thermal resistance, which usually becomes the limiting side for polymer heat exchanger, was calculated to account for only up to 3% of the total thermal resistance. A comparison of air-side heat transfer coefficient of the polymer heat exchanger with some of the commercially available plain plate fin surface heat exchangers show that polymer heat exchanger performance is equal or superior to plain plate fin surfaces. This shows the promising potential for polymer heat exchangers to compete with conventional metallic heat exchangers when an additive manufacturing-enabled fabrication is utilized. Major contributions of this study are as follows: (1) For the first time demonstrated the potential of additive manufacturing in metal printing of heat exchangers that benefit from a sophisticated design to yield a performance substantially above the respective conventional systems. Such heat exchangers cannot be fabricated with the conventional fabrication techniques. (2) For the first time demonstrated the potential of additive manufacturing to produce polymer heat exchangers that by design minimize the role of thermal conductivity and deliver a thermal performance equal or better that their respective metallic heat exchangers. In addition of other advantages of polymer over metal like antifouling, anticorrosion, and lightweight. Details of the work are documented in respective chapters of this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Good schools are essential for building thriving urban areas. They are important for preparing the future human resource and directly contribute to social and economic development of a place. They not only act as magnets for prospective residents, but also are necessary for retaining current population. As public infrastructure, schools mirror their neighborhood. “Their location, design and physical condition are important determinants of neighborhood quality, regional growth and change, and quality of life.”2 They impact housing development and utility requirements among many things. Hence, planning for schools along with other infrastructure in an area is essential. Schools are very challenging to plan, especially in urbanizing areas with changing demographic dynamics, where the development market and housing development can shift drastically a number of times. In such places projecting the future school enrollments is very difficult and in case of large population influx, school development can be unable to catch up with population growth which results in overcrowding. Typical is the case of Arlington County VA. In the past two decades the County has changed dramatically from a collection of bedroom communities in Washington DC Metro Region to a thriving urban area. Its metro accessible urban corridors are among most desired locations for development in the region. However, converting single family neighborhoods into high density areas has put a lot of pressure on its school facilities and has resulted in overcrowded schools. Its public school enrollment has grown by 19% from 2009 to 2014.3 While the percentage of population under 5 years age has increased in last 10 years, those in the 5-19 age group have decreased4. Hence, there is more pressure on the elementary school facilities than others in the County. Design-wise, elementary schools, due to their size, can be imagined as a community component. There are a number of strategies that can be used to develop elementary school in urbanizing areas as a part of the neighborhood. Experimenting with space planning and building on partnership and mixed-use opportunities can help produce better designs for new schools in future. This thesis is an attempt to develop elementary school models for urbanizing areas of Arlington County. The school models will be designed keeping in mind the shifting nature of population and resulting student enrollments in these areas. They will also aim to be efficient and sustainable, and lead to the next generation design for elementary school education. The overall purpose of the project is to address barriers to elementary school development in urbanizing areas through creative design and planning strategies. To test above mentioned ideas, the Joint-Use School typology of housing +school design has been identified for elementary school development in urbanizing areas in this thesis project. The development is based on the Arlington Public School’s Program guidelines (catering to 600 students). The site selected for this project is Clarendon West (part of Red Top Cab Properties) in Clarendon, Arlington County VA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The constant need to improve helicopter performance requires the optimization of existing and future rotor designs. A crucial indicator of rotor capability is hover performance, which depends on the near-body flow as well as the structure and strength of the tip vortices formed at the trailing edge of the blades. Computational Fluid Dynamics (CFD) solvers must balance computational expenses with preservation of the flow, and to limit computational expenses the mesh is often coarsened in the outer regions of the computational domain. This can lead to degradation of the vortex structures which compose the rotor wake. The current work conducts three-dimensional simulations using OVERTURNS, a three-dimensional structured grid solver that models the flow field using the Reynolds-Averaged Navier-Stokes equations. The S-76 rotor in hover was chosen as the test case for evaluating the OVERTURNS solver, focusing on methods to better preserve the rotor wake. Using the hover condition, various computational domains, spatial schemes, and boundary conditions were tested. Furthermore, a mesh adaption routine was implemented, allowing for the increased refinement of the mesh in areas of turbulent flow without the need to add points to the mesh. The adapted mesh was employed to conduct a sweep of collective pitch angles, comparing the resolved wake and integrated forces to existing computational and experimental results. The integrated thrust values saw very close agreement across all tested pitch angles, while the power was slightly over predicted, resulting in under prediction of the Figure of Merit. Meanwhile, the tip vortices have been preserved for multiple blade passages, indicating an improvement in vortex preservation when compared with previous work. Finally, further results from a single collective pitch case were presented to provide a more complete picture of the solver results.