2 resultados para short interspersed nuclear elements (SINEs)

em DRUM (Digital Repository at the University of Maryland)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation project explores some of the technical and musical challenges that face pianists in a collaborative role—specifically, those challenges that may be considered virtuosic in nature. The material was chosen from the works of Rachmaninoff and Ravel because of the technically and musically demanding yet idiomatic piano writing. This virtuosic piano writing also extends into the collaborative repertoire. The pieces were also chosen to demonstrate these virtuosic elements in a wide variety of settings. Solo piano pieces were chosen to provide a point of departure, and the programmed works ranged from vocal to two-piano, to sonatas and a piano trio. The recitals were arranged to demonstrate as much contrast as possible, while being grouped by composer. The first recital was performed on April 24, 2009. This recital featured five songs of Rachmaninoff, as well as three solo piano preludes and his Suite No. 2 for two pianos. The second recital occurred on November 16, 2010. This recital featured the music of both Rachmaninoff and Ravel, as well as a short lecture introducing the solo work “Ondine” from Gaspard de la nuit by Ravel. Following the lecture were the Cinq mélodies populaires grecques and the program closed with the substantial Rachmaninoff Sonata for Cello and Piano. The final program was given on October 10, 2011. This recital featured the music of Ravel, and it included his Sonata for Violin and Piano, the Debussy Nocturnes transcribed for two pianos by Ravel, and the Piano Trio. The inclusion of a transcription of a work by another composer highlights Ravel’s particular style of writing for the piano. All of these recitals were performed at the Gildenhorn Recital Hall in the Clarice Smith Performing Arts Center at the University of Maryland. The recitals are recorded on compact discs, which can be found in the Digital Repository at the University of Maryland (DRUM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Turnip crinkle virus (TCV) and Pea enation mosaic virus (PEMV) are two positive (+)-strand RNA viruses that are used to investigate the regulation of translation and replication due to their small size and simple genomes. Both viruses contain cap-independent translation elements (CITEs) within their 3´ untranslated regions (UTRs) that fold into tRNA-shaped structures (TSS) according to nuclear magnetic resonance and small angle x-ray scattering analysis (TCV) and computational prediction (PEMV). Specifically, the TCV TSS can directly associate with ribosomes and participates in RNA-dependent RNA polymerase (RdRp) binding. The PEMV kissing-loop TSS (kl-TSS) can simultaneously bind to ribosomes and associate with the 5´ UTR of the viral genome. Mutational analysis and chemical structure probing methods provide great insight into the function and secondary structure of the two 3´ CITEs. However, lack of 3-D structural information has limited our understanding of their functional dynamics. Here, I report the folding dynamics for the TCV TSS using optical tweezers (OT), a single molecule technique. My study of the unfolding/folding pathways for the TCV TSS has provided an unexpected unfolding pathway, confirmed the presence of Ψ3 and hairpin elements, and suggested an interconnection between the hairpins and pseudoknots. In addition, this study has demonstrated the importance of the adjacent upstream adenylate-rich sequence for the formation of H4a/Ψ3 along with the contribution of magnesium to the stability of the TCV TSS. In my second project, I report on the structural analysis of the PEMV kl-TSS using NMR and SAXS. This study has re-confirmed the base-pair pattern for the PEMV kl-TSS and the proposed interaction of the PEMV kl-TSS with its interacting partner, hairpin 5H2. The molecular envelope of the kl-TSS built from SAXS analysis suggests the kl-TSS has two functional conformations, one of which has a different shape from the previously predicted tRNA-shaped form. Along with applying biophysical methods to study the structural folding dynamics of RNAs, I have also developed a technique that improves the production of large quantities of recombinant RNAs in vivo for NMR study. In this project, I report using the wild-type and mutant E.coli strains to produce cost-effective, site-specific labeled, recombinant RNAs. This technique was validated with four representative RNAs of different sizes and complexity to produce milligram amounts of RNAs. The benefit of using site-specific labeled RNAs made from E.coli was demonstrated with several NMR techniques.