2 resultados para scientific information, news website, news, Science News
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Problem This dissertation presents a literature-based framework for communication in science (with the elements partners, purposes, message, and channel), which it then applies in and amends through an empirical study of how geoscientists use two social computing technologies (SCTs), blogging and Twitter (both general use and tweeting from conferences). How are these technologies used and what value do scientists derive from them? Method The empirical part used a two-pronged qualitative study, using (1) purposive samples of ~400 blog posts and ~1000 tweets and (2) a purposive sample of 8 geoscientist interviews. Blog posts, tweets, and interviews were coded using the framework, adding new codes as needed. The results were aggregated into 8 geoscientist case studies, and general patterns were derived through cross-case analysis. Results A detailed picture of how geoscientists use blogs and twitter emerged, including a number of new functions not served by traditional channels. Some highlights: Geoscientists use SCTs for communication among themselves as well as with the public. Blogs serve persuasion and personal knowledge management; Twitter often amplifies the signal of traditional communications such as journal articles. Blogs include tutorials for peers, reviews of basic science concepts, and book reviews. Twitter includes links to readings, requests for assistance, and discussions of politics and religion. Twitter at conferences provides live coverage of sessions. Conclusions Both blogs and Twitter are routine parts of scientists' communication toolbox, blogs for in-depth, well-prepared essays, Twitter for faster and broader interactions. Both have important roles in supporting community building, mentoring, and learning and teaching. The Framework of Communication in Science was a useful tool in studying these two SCTs in this domain. The results should encourage science administrators to facilitate SCT use of scientists in their organization and information providers to search SCT documents as an important source of information.
Resumo:
While news stories are an important traditional medium to broadcast and consume news, microblogging has recently emerged as a place where people can dis- cuss, disseminate, collect or report information about news. However, the massive information in the microblogosphere makes it hard for readers to keep up with these real-time updates. This is especially a problem when it comes to breaking news, where people are more eager to know “what is happening”. Therefore, this dis- sertation is intended as an exploratory effort to investigate computational methods to augment human effort when monitoring the development of breaking news on a given topic from a microblog stream by extractively summarizing the updates in a timely manner. More specifically, given an interest in a topic, either entered as a query or presented as an initial news report, a microblog temporal summarization system is proposed to filter microblog posts from a stream with three primary concerns: topical relevance, novelty, and salience. Considering the relatively high arrival rate of microblog streams, a cascade framework consisting of three stages is proposed to progressively reduce quantity of posts. For each step in the cascade, this dissertation studies methods that improve over current baselines. In the relevance filtering stage, query and document expansion techniques are applied to mitigate sparsity and vocabulary mismatch issues. The use of word embedding as a basis for filtering is also explored, using unsupervised and supervised modeling to characterize lexical and semantic similarity. In the novelty filtering stage, several statistical ways of characterizing novelty are investigated and ensemble learning techniques are used to integrate results from these diverse techniques. These results are compared with a baseline clustering approach using both standard and delay-discounted measures. In the salience filtering stage, because of the real-time prediction requirement a method of learning verb phrase usage from past relevant news reports is used in conjunction with some standard measures for characterizing writing quality. Following a Cranfield-like evaluation paradigm, this dissertation includes a se- ries of experiments to evaluate the proposed methods for each step, and for the end- to-end system. New microblog novelty and salience judgments are created, building on existing relevance judgments from the TREC Microblog track. The results point to future research directions at the intersection of social media, computational jour- nalism, information retrieval, automatic summarization, and machine learning.