3 resultados para rotor
em DRUM (Digital Repository at the University of Maryland)
Resumo:
A methodology has been developed and presented to enable the use of small to medium scale acoustic hover facilities for the quantitative measurement of rotor impulsive noise. The methodology was applied to the University of Maryland Acoustic Chamber resulting in accurate measurements of High Speed Impulsive (HSI) noise for rotors running at tip Mach numbers between 0.65 and 0.85 – with accuracy increasing as the tip Mach number was increased. Several factors contributed to the success of this methodology including: • High Speed Impulsive (HSI) noise is characterized by very distinct pulses radiated from the rotor. The pulses radiate high frequency energy – but the energy is contained in short duration time pulses. • The first reflections from these pulses can be tracked (using ray theory) and, through adjustment of the microphone position and suitably applied acoustic treatment at the reflected surface, reduced to small levels. A computer code was developed that automates this process. The code also tracks first bounce reflection timing, making it possible to position the first bounce reflections outside of a measurement window. • Using a rotor with a small number of blades (preferably one) reduces the number of interfering first bounce reflections and generally improves the measured signal fidelity. The methodology will help the gathering of quantitative hovering rotor noise data in less than optimal acoustic facilities and thus enable basic rotorcraft research and rotor blade acoustic design.
Resumo:
The constant need to improve helicopter performance requires the optimization of existing and future rotor designs. A crucial indicator of rotor capability is hover performance, which depends on the near-body flow as well as the structure and strength of the tip vortices formed at the trailing edge of the blades. Computational Fluid Dynamics (CFD) solvers must balance computational expenses with preservation of the flow, and to limit computational expenses the mesh is often coarsened in the outer regions of the computational domain. This can lead to degradation of the vortex structures which compose the rotor wake. The current work conducts three-dimensional simulations using OVERTURNS, a three-dimensional structured grid solver that models the flow field using the Reynolds-Averaged Navier-Stokes equations. The S-76 rotor in hover was chosen as the test case for evaluating the OVERTURNS solver, focusing on methods to better preserve the rotor wake. Using the hover condition, various computational domains, spatial schemes, and boundary conditions were tested. Furthermore, a mesh adaption routine was implemented, allowing for the increased refinement of the mesh in areas of turbulent flow without the need to add points to the mesh. The adapted mesh was employed to conduct a sweep of collective pitch angles, comparing the resolved wake and integrated forces to existing computational and experimental results. The integrated thrust values saw very close agreement across all tested pitch angles, while the power was slightly over predicted, resulting in under prediction of the Figure of Merit. Meanwhile, the tip vortices have been preserved for multiple blade passages, indicating an improvement in vortex preservation when compared with previous work. Finally, further results from a single collective pitch case were presented to provide a more complete picture of the solver results.
Resumo:
Gemstone Team WAVES (Water and Versatile Energy Systems)