2 resultados para role model
em DRUM (Digital Repository at the University of Maryland)
The Role of Attachment in a Social Cognitive Model of Social Domain Satisfaction in College Students
Resumo:
The study examined a modified social cognitive model of domain satisfaction (Lent, 2004). In addition to social cognitive variables and trait positive affect, the model included two aspects of adult attachment, attachment anxiety and avoidance. The study extended recent research on well-being and satisfaction in academic, work, and social domains. The adjusted model was tested in a sample of 454 college students, in order to determine the role of adult attachment variables in explaining social satisfaction, above and beyond the direct and indirect effects of trait positive affect. Confirmatory factor analysis found support for 8 correlated factors in the modified model: social domain satisfaction, positive affect, attachment avoidance, attachment anxiety, social support, social self-efficacy, social outcome expectations, and social goal progress. Three alternative structural models were tested to account for the ways in which attachment anxiety and attachment avoidance might relate to social satisfaction. Results of model testing provided support for a model in which attachment avoidance produced only an indirect path to social satisfaction via self-efficacy and social support. Positive affect, avoidance, social support, social self-efficacy, and goal progress each produced significant direct or indirect paths to social domain satisfaction, though attachment anxiety and social outcome expectations did not contribute to the predictive model. Implications of the findings regarding the modified social cognitive model of social domain satisfaction were discussed.
Resumo:
Intercellular adhesion molecule 1 (ICAM-1) is a transmembrane protein found on the surface of vascular endothelial cells (ECs). Its expression is upregulated at inflammatory sites, allowing for targeted delivery of therapeutics using ICAM-1-binding drug carriers. Engagement of multiple copies of ICAM-1 by these drug carriers induces cell adhesion molecule (CAM)-mediated endocytosis, which results in trafficking of carriers to lysosomes and across ECs. Knowledge about the regulation behind CAM-mediated endocytosis can help improve drug delivery, but questions remain about these regulatory mechanisms. Furthermore, little is known about the natural function of this endocytic pathway. To address these gaps in knowledge, we focused on two natural binding partners of ICAM-1 that potentially elicit CAM-mediated endocytosis: leukocytes (which bind ICAM-1 via β2 integrins) and fibrin polymers (a main component of blood clots which binds ICAM-1 via the γ3 sequence). First, inspired by properties of these natural binding partners, we varied the size and targeting moiety of model drug carriers to determine how these parameters affect CAM-mediated endocytosis. Increasing ICAM-1-targeted carrier size slowed carrier uptake kinetics, reduced carrier trafficking to lysosomes, and increased carrier transport across ECs. Changing targeting moieties from antibodies to peptides decreased particle binding and uptake, lowered trafficking to lysosomes, and increased transport across ECs. Second, using cell culture models of leukocyte/EC interactions, inhibiting regulatory elements of the CAM-mediated pathway disrupted leukocyte sampling, a process crucial to leukocyte crossing of endothelial layers (transmigration). This inhibition also decreased leukocyte transmigration across ECs, specifically through the transcellular route, which occurs through a single EC without disassembly of cell-cell junctions. Third, fibrin meshes, which mimic blood clot fragments/remnants, bound to ECs at ICAM-1-enriched sites and were internalized by the endothelium. Inhibiting the CAM-mediated pathway disrupted this uptake. Following endocytosis, fibrin meshes trafficked to lysosomes where they were degraded. In mouse models, CAM-mediated endocytosis of fibrin meshes appeared to remove fibrin remnants at the endothelial surface, preventing re-initiation of the coagulation cascade. Overall, these results support a link between CAM-mediated endocytosis and leukocyte transmigration as well as uptake of fibrin materials by ECs. Furthermore, these results will guide the future design of ICAM-1-targeted carrier-assisted therapies.