2 resultados para regional communities
em DRUM (Digital Repository at the University of Maryland)
Resumo:
This research concerns the conceptual and empirical relationship between environmental justice and social-ecological resilience as it relates to climate change vulnerability and adaptation. Two primary questions guided this work. First, what is the level of resilience and adaptive capacity for social-ecological systems that are characterized by environmental injustice in the face of climate change? And second, what is the role of an environmental justice approach in developing adaptation policies that will promote social-ecological resilience? These questions were investigated in three African American communities that are particularly vulnerable to flooding from sea-level rise on the Eastern Shore of the Chesapeake Bay. Using qualitative and quantitative methods, I found that in all three communities, religious faith and the church, rootedness in the landscape, and race relations were highly salient to community experience. The degree to which these common aspects of the communities have imparted adaptive capacity has changed over time. Importantly, a given social-ecological factor does not have the same effect on vulnerability in all communities; however, in all communities political isolation decreases adaptive capacity and increases vulnerability. This political isolation is at least partly due to procedural injustice, which occurs for a number of interrelated reasons. This research further revealed that while all stakeholders (policymakers, environmentalists, and African American community members) generally agree that justice needs to be increased on the Eastern Shore, stakeholder groups disagree about what a justice approach to adaptation would look like. When brought together at a workshop, however, these stakeholders were able to identify numerous challenges and opportunities for increasing justice. Resilience was assessed by the presence of four resilience factors: living with uncertainty, nurturing diversity, combining different types of knowledge, and creating opportunities for self-organization. Overall, these communities seem to have low resilience; however, there is potential for resilience to increase. Finally, I argue that the use of resilience theory for environmental justice communities is limited by the great breadth and depth of knowledge required to evaluate the state of the social-ecological system, the complexities of simultaneously promoting resilience at both the regional and local scale, and the lack of attention to issues of justice.
Resumo:
Restoration of natural wetlands may be informed by macroinvertebrate community composition. Macroinvertebrate communities of wetlands are influenced by environmental characteristics such as vegetation, soil, hydrology, land use, and isolation. This dissertation explores multiple approaches to the assessment of wetland macroinvertebrate community composition, and demonstrates how these approaches can provide complementary insights into the community ecology of aquatic macroinvertebrates. Specifically, this work focuses on macroinvertebrates of Delmarva Bays, isolated seasonal wetlands found on Maryland’s eastern shore. A comparison of macroinvertebrate community change over a nine years in a restored wetland complex indicated that the macroinvertebrate community of a rehabilitated wetlands more rapidly approximated the community of a reference site than did a newly created wetland. The recovery of a natural macroinvertebrate community in the rehabilitated wetland indicated that wetland rehabilitation should be prioritized over wetland creation and long-term monitoring may be needed to evaluate restoration success. This study also indicated that characteristics of wetland vegetation reflected community composition. The connection between wetland vegetation and macroinvertebrate community composition led to a regional assessment of predaceous diving beetle (Coleoptera: Dytiscidae) community composition in 20 seasonal wetlands, half with and half without sphagnum moss (Sphagnum spp.). Species-level identifications indicated that wetlands with sphagnum support unique and diverse assemblages of beetles. These patterns suggest that sphagnum wetlands provide habitat that supports biodiversity on the Delmarva Peninsula. To compare traits of co-occurring beetles, mandible morphology and temporal and spatial variation were measured between three species of predaceous diving beetles. Based on mandible architecture, all species may consume similarly sized prey, but prey characteristics likely differ in terms of piercing force required for successful capture and consumption. Therefore, different assemblages of aquatic beetles may have different effects on macroinvertebrate community structure. Integrating community-level and species-level data strengthens the association between individual organisms and their ecological role. Effective restoration of imperiled wetlands benefits from this integration, as it informs the management practices that both preserve biodiversity and promote ecosystem services.