4 resultados para real world context
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Secure computation involves multiple parties computing a common function while keeping their inputs private, and is a growing field of cryptography due to its potential for maintaining privacy guarantees in real-world applications. However, current secure computation protocols are not yet efficient enough to be used in practice. We argue that this is due to much of the research effort being focused on generality rather than specificity. Namely, current research tends to focus on constructing and improving protocols for the strongest notions of security or for an arbitrary number of parties. However, in real-world deployments, these security notions are often too strong, or the number of parties running a protocol would be smaller. In this thesis we make several steps towards bridging the efficiency gap of secure computation by focusing on constructing efficient protocols for specific real-world settings and security models. In particular, we make the following four contributions: - We show an efficient (when amortized over multiple runs) maliciously secure two-party secure computation (2PC) protocol in the multiple-execution setting, where the same function is computed multiple times by the same pair of parties. - We improve the efficiency of 2PC protocols in the publicly verifiable covert security model, where a party can cheat with some probability but if it gets caught then the honest party obtains a certificate proving that the given party cheated. - We show how to optimize existing 2PC protocols when the function to be computed includes predicate checks on its inputs. - We demonstrate an efficient maliciously secure protocol in the three-party setting.
Resumo:
Children develop in a sea of reciprocal social interaction, but their brain development is predominately studied in non-interactive contexts (e.g., viewing photographs of faces). This dissertation investigated how the developing brain supports social interaction. Specifically, novel paradigms were used to target two facets of social experience—social communication and social motivation—across three studies in children and adults. In Study 1, adults listened to short vignettes—which contained no social information—that they believed to be either prerecorded or presented over an audio-feed by a live social partner. Simply believing that speech was from a live social partner increased activation in the brain’s mentalizing network—a network involved in thinking about others’ thoughts. Study 2 extended this paradigm to middle childhood, a time of increasing social competence and social network complexity, as well as structural and functional social brain development. Results showed that, as in adults, regions of the mentalizing network were engaged by live speech. Taken together, these findings indicate that the mentalizing network may support the processing of interactive communicative cues across development. Given this established importance of social-interactive context, Study 3 examined children’s social motivation when they believed they were engaged in a computer-based chat with a peer. Children initiated interaction via sharing information about their likes and hobbies and received responses from the peer. Compared to a non-social control, in which children chatted with a computer, peer interaction increased activation in mentalizing regions and reward circuitry. Further, within mentalizing regions, responsivity to the peer increased with age. Thus, across all three studies, social cognitive regions associated with mentalizing supported real-time social interaction. In contrast, the specific social context appeared to influence both reward circuitry involvement and age-related changes in neural activity. Future studies should continue to examine how the brain supports interaction across varied real-world social contexts. In addition to illuminating typical development, understanding the neural bases of interaction will offer insight into social disabilities such as autism, where social difficulties are often most acute in interactive situations. Ultimately, to best capture human experience, social neuroscience ought to be embedded in the social world.
Resumo:
Edge-labeled graphs have proliferated rapidly over the last decade due to the increased popularity of social networks and the Semantic Web. In social networks, relationships between people are represented by edges and each edge is labeled with a semantic annotation. Hence, a huge single graph can express many different relationships between entities. The Semantic Web represents each single fragment of knowledge as a triple (subject, predicate, object), which is conceptually identical to an edge from subject to object labeled with predicates. A set of triples constitutes an edge-labeled graph on which knowledge inference is performed. Subgraph matching has been extensively used as a query language for patterns in the context of edge-labeled graphs. For example, in social networks, users can specify a subgraph matching query to find all people that have certain neighborhood relationships. Heavily used fragments of the SPARQL query language for the Semantic Web and graph queries of other graph DBMS can also be viewed as subgraph matching over large graphs. Though subgraph matching has been extensively studied as a query paradigm in the Semantic Web and in social networks, a user can get a large number of answers in response to a query. These answers can be shown to the user in accordance with an importance ranking. In this thesis proposal, we present four different scoring models along with scalable algorithms to find the top-k answers via a suite of intelligent pruning techniques. The suggested models consist of a practically important subset of the SPARQL query language augmented with some additional useful features. The first model called Substitution Importance Query (SIQ) identifies the top-k answers whose scores are calculated from matched vertices' properties in each answer in accordance with a user-specified notion of importance. The second model called Vertex Importance Query (VIQ) identifies important vertices in accordance with a user-defined scoring method that builds on top of various subgraphs articulated by the user. Approximate Importance Query (AIQ), our third model, allows partial and inexact matchings and returns top-k of them with a user-specified approximation terms and scoring functions. In the fourth model called Probabilistic Importance Query (PIQ), a query consists of several sub-blocks: one mandatory block that must be mapped and other blocks that can be opportunistically mapped. The probability is calculated from various aspects of answers such as the number of mapped blocks, vertices' properties in each block and so on and the most top-k probable answers are returned. An important distinguishing feature of our work is that we allow the user a huge amount of freedom in specifying: (i) what pattern and approximation he considers important, (ii) how to score answers - irrespective of whether they are vertices or substitution, and (iii) how to combine and aggregate scores generated by multiple patterns and/or multiple substitutions. Because so much power is given to the user, indexing is more challenging than in situations where additional restrictions are imposed on the queries the user can ask. The proposed algorithms for the first model can also be used for answering SPARQL queries with ORDER BY and LIMIT, and the method for the second model also works for SPARQL queries with GROUP BY, ORDER BY and LIMIT. We test our algorithms on multiple real-world graph databases, showing that our algorithms are far more efficient than popular triple stores.
Resumo:
Human relationships have long been studied by scientists from domains like sociology, psychology, literature, etc. for understanding people's desires, goals, actions and expected behaviors. In this dissertation we study inter-personal relationships as expressed in natural language text. Modeling inter-personal relationships from text finds application in general natural language understanding, as well as real-world domains such as social networks, discussion forums, intelligent virtual agents, etc. We propose that the study of relationships should incorporate not only linguistic cues in text, but also the contexts in which these cues appear. Our investigations, backed by empirical evaluation, support this thesis, and demonstrate that the task benefits from using structured models that incorporate both types of information. We present such structured models to address the task of modeling the nature of relationships between any two given characters from a narrative. To begin with, we assume that relationships are of two types: cooperative and non-cooperative. We first describe an approach to jointly infer relationships between all characters in the narrative, and demonstrate how the task of characterizing the relationship between two characters can benefit from including information about their relationships with other characters in the narrative. We next formulate the relationship-modeling problem as a sequence prediction task to acknowledge the evolving nature of human relationships, and demonstrate the need to model the history of a relationship in predicting its evolution. Thereafter, we present a data-driven method to automatically discover various types of relationships such as familial, romantic, hostile, etc. Like before, we address the task of modeling evolving relationships but don't restrict ourselves to two types of relationships. We also demonstrate the need to incorporate not only local historical but also global context while solving this problem. Lastly, we demonstrate a practical application of modeling inter-personal relationships in the domain of online educational discussion forums. Such forums offer opportunities for its users to interact and form deeper relationships. With this view, we address the task of identifying initiation of such deeper relationships between a student and the instructor. Specifically, we analyze contents of the forums to automatically suggest threads to the instructors that require their intervention. By highlighting scenarios that need direct instructor-student interactions, we alleviate the need for the instructor to manually peruse all threads of the forum and also assist students who have limited avenues for communicating with instructors. We do this by incorporating the discourse structure of the thread through latent variables that abstractly represent contents of individual posts and model the flow of information in the thread. Such latent structured models that incorporate the linguistic cues without losing their context can be helpful in other related natural language understanding tasks as well. We demonstrate this by using the model for a very different task: identifying if a stated desire has been fulfilled by the end of a story.