3 resultados para raccomandazione e-learning privacy tecnica rule-based recommender suggerimento
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The past several years have seen the surprising and rapid rise of Bitcoin and other cryptocurrencies. These are decentralized peer-to-peer networks that allow users to transmit money, tocompose financial instruments, and to enforce contracts between mutually distrusting peers, andthat show great promise as a foundation for financial infrastructure that is more robust, efficientand equitable than ours today. However, it is difficult to reason about the security of cryptocurrencies. Bitcoin is a complex system, comprising many intricate and subtly-interacting protocol layers. At each layer it features design innovations that (prior to our work) have not undergone any rigorous analysis. Compounding the challenge, Bitcoin is but one of hundreds of competing cryptocurrencies in an ecosystem that is constantly evolving. The goal of this thesis is to formally reason about the security of cryptocurrencies, reining in their complexity, and providing well-defined and justified statements of their guarantees. We provide a formal specification and construction for each layer of an abstract cryptocurrency protocol, and prove that our constructions satisfy their specifications. The contributions of this thesis are centered around two new abstractions: scratch-off puzzles, and the blockchain functionality model. Scratch-off puzzles are a generalization of the Bitcoin mining algorithm, its most iconic and novel design feature. We show how to provide secure upgrades to a cryptocurrency by instantiating the protocol with alternative puzzle schemes. We construct secure puzzles that address important and well-known challenges facing Bitcoin today, including wasted energy and dangerous coalitions. The blockchain functionality is a general-purpose model of a cryptocurrency rooted in the Universal Composability cryptography theory. We use this model to express a wide range of applications, including transparent smart contracts (like those featured in Bitcoin and Ethereum), and also privacy-preserving applications like sealed-bid auctions. We also construct a new protocol compiler, called Hawk, which translates user-provided specifications into privacy-preserving protocols based on zero-knowledge proofs.
Resumo:
A primary goal of context-aware systems is delivering the right information at the right place and right time to users in order to enable them to make effective decisions and improve their quality of life. There are three key requirements for achieving this goal: determining what information is relevant, personalizing it based on the users context (location, preferences, behavioral history etc.), and delivering it to them in a timely manner without an explicit request from them. These requirements create a paradigm that we term as Proactive Context-aware Computing. Most of the existing context-aware systems fulfill only a subset of these requirements. Many of these systems focus only on personalization of the requested information based on users current context. Moreover, they are often designed for specific domains. In addition, most of the existing systems are reactive - the users request for some information and the system delivers it to them. These systems are not proactive i.e. they cannot anticipate users intent and behavior and act proactively without an explicit request from them. In order to overcome these limitations, we need to conduct a deeper analysis and enhance our understanding of context-aware systems that are generic, universal, proactive and applicable to a wide variety of domains. To support this dissertation, we explore several directions. Clearly the most significant sources of information about users today are smartphones. A large amount of users context can be acquired through them and they can be used as an effective means to deliver information to users. In addition, social media such as Facebook, Flickr and Foursquare provide a rich and powerful platform to mine users interests, preferences and behavioral history. We employ the ubiquity of smartphones and the wealth of information available from social media to address the challenge of building proactive context-aware systems. We have implemented and evaluated a few approaches, including some as part of the Rover framework, to achieve the paradigm of Proactive Context-aware Computing. Rover is a context-aware research platform which has been evolving for the last 6 years. Since location is one of the most important context for users, we have developed Locus, an indoor localization, tracking and navigation system for multi-story buildings. Other important dimensions of users context include the activities that they are engaged in. To this end, we have developed SenseMe, a system that leverages the smartphone and its multiple sensors in order to perform multidimensional context and activity recognition for users. As part of the SenseMe project, we also conducted an exploratory study of privacy, trust, risks and other concerns of users with smart phone based personal sensing systems and applications. To determine what information would be relevant to users situations, we have developed TellMe - a system that employs a new, flexible and scalable approach based on Natural Language Processing techniques to perform bootstrapped discovery and ranking of relevant information in context-aware systems. In order to personalize the relevant information, we have also developed an algorithm and system for mining a broad range of users preferences from their social network profiles and activities. For recommending new information to the users based on their past behavior and context history (such as visited locations, activities and time), we have developed a recommender system and approach for performing multi-dimensional collaborative recommendations using tensor factorization. For timely delivery of personalized and relevant information, it is essential to anticipate and predict users behavior. To this end, we have developed a unified infrastructure, within the Rover framework, and implemented several novel approaches and algorithms that employ various contextual features and state of the art machine learning techniques for building diverse behavioral models of users. Examples of generated models include classifying users semantic places and mobility states, predicting their availability for accepting calls on smartphones and inferring their device charging behavior. Finally, to enable proactivity in context-aware systems, we have also developed a planning framework based on HTN planning. Together, these works provide a major push in the direction of proactive context-aware computing.
Resumo:
Title of Thesis: Thesis directed by: ABSTRACT EXAMINING THE IMPLEMENTATION CHALLENGES OF PROJECT-BASED LEARNING: A CASE STUDY Stefan Frederick Brooks, Master of Education, 2016 Professor and Chair Francine Hultgren Teaching and Learning, Policy and Leadership Department Project-based learning (PjBL) is a common instructional strategy to consider for educators, scholars, and advocates who focus on education reform. Previous research on PjBL has focused on its effectiveness, but a limited amount of research exists on the implementation challenges. This exploratory case study examines an attempted project- based learning implementation in one chemistry classroom at a private school that fully supports PjBL for most subjects with limited use in mathematics. During the course of the study, the teacher used a modified version of PjBL. Specifically, he implemented some of the elements of PjBL, such as a driving theme and a public presentation of projects, with the support of traditional instructional methods due to the context of the classroom. The findings of this study emphasize the teachers experience with implementing some of the PjBL components and how the inherent implementation challenges affected his practice.