6 resultados para quantum information theory

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis considers non-perturbative methods in quantum field theory with applications to gravity and cosmology. In particular, there are chapters on black hole holography, inflationary model building, and the conformal bootstrap.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

While fault-tolerant quantum computation might still be years away, analog quantum simulators offer a way to leverage current quantum technologies to study classically intractable quantum systems. Cutting edge quantum simulators such as those utilizing ultracold atoms are beginning to study physics which surpass what is classically tractable. As the system sizes of these quantum simulators increase, there are also concurrent gains in the complexity and types of Hamiltonians which can be simulated. In this work, I describe advances toward the realization of an adaptable, tunable quantum simulator capable of surpassing classical computation. We simulate long-ranged Ising and XY spin models which can have global arbitrary transverse and longitudinal fields in addition to individual transverse fields using a linear chain of up to 24 Yb+ 171 ions confined in a linear rf Paul trap. Each qubit is encoded in the ground state hyperfine levels of an ion. Spin-spin interactions are engineered by the application of spin-dependent forces from laser fields, coupling spin to motion. Each spin can be read independently using state-dependent fluorescence. The results here add yet more tools to an ever growing quantum simulation toolbox. One of many challenges has been the coherent manipulation of individual qubits. By using a surprisingly large fourth-order Stark shifts in a clock-state qubit, we demonstrate an ability to individually manipulate spins and apply independent Hamiltonian terms, greatly increasing the range of quantum simulations which can be implemented. As quantum systems grow beyond the capability of classical numerics, a constant question is how to verify a quantum simulation. Here, I present measurements which may provide useful metrics for large system sizes and demonstrate them in a system of up to 24 ions during a classically intractable simulation. The observed values are consistent with extremely large entangled states, as much as ~95% of the system entangled. Finally, we use many of these techniques in order to generate a spin Hamiltonian which fails to thermalize during experimental time scales due to a meta-stable state which is often called prethermal. The observed prethermal state is a new form of prethermalization which arises due to long-range interactions and open boundary conditions, even in the thermodynamic limit. This prethermalization is observed in a system of up to 22 spins. We expect that system sizes can be extended up to 30 spins with only minor upgrades to the current apparatus. These results emphasize that as the technology improves, the techniques and tools developed here can potentially be used to perform simulations which will surpass the capability of even the most sophisticated classical techniques, enabling the study of a whole new regime of quantum many-body physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

(Deep) neural networks are increasingly being used for various computer vision and pattern recognition tasks due to their strong ability to learn highly discriminative features. However, quantitative analysis of their classication ability and design philosophies are still nebulous. In this work, we use information theory to analyze the concatenated restricted Boltzmann machines (RBMs) and propose a mutual information-based RBM neural networks (MI-RBM). We develop a novel pretraining algorithm to maximize the mutual information between RBMs. Extensive experimental results on various classication tasks show the eectiveness of the proposed approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In economics of information theory, credence products are those whose quality is difficult or impossible for consumers to assess, even after they have consumed the product (Darby & Karni, 1973). This dissertation is focused on the content, consumer perception, and power of online reviews for credence services. Economics of information theory has long assumed, without empirical confirmation, that consumers will discount the credibility of claims about credence quality attributes. The same theories predict that because credence services are by definition obscure to the consumer, reviews of credence services are incapable of signaling quality. Our research aims to question these assumptions. In the first essay we examine how the content and structure of online reviews of credence services systematically differ from the content and structure of reviews of experience services and how consumers judge these differences. We have found that online reviews of credence services have either less important or less credible content than reviews of experience services and that consumers do discount the credibility of credence claims. However, while consumers rationally discount the credibility of simple credence claims in a review, more complex argument structure and the inclusion of evidence attenuate this effect. In the second essay we ask, “Can online reviews predict the worst doctors?” We examine the power of online reviews to detect low quality, as measured by state medical board sanctions. We find that online reviews are somewhat predictive of a doctor’s suitability to practice medicine; however, not all the data are useful. Numerical or star ratings provide the strongest quality signal; user-submitted text provides some signal but is subsumed almost completely by ratings. Of the ratings variables in our dataset, we find that punctuality, rather than knowledge, is the strongest predictor of medical board sanctions. These results challenge the definition of credence products, which is a long-standing construct in economics of information theory. Our results also have implications for online review users, review platforms, and for the use of predictive modeling in the context of information systems research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this dissertation I draw a connection between quantum adiabatic optimization, spectral graph theory, heat-diffusion, and sub-stochastic processes through the operators that govern these processes and their associated spectra. In particular, we study Hamiltonians which have recently become known as ``stoquastic'' or, equivalently, the generators of sub-stochastic processes. The operators corresponding to these Hamiltonians are of interest in all of the settings mentioned above. I predominantly explore the connection between the spectral gap of an operator, or the difference between the two lowest energies of that operator, and certain equilibrium behavior. In the context of adiabatic optimization, this corresponds to the likelihood of solving the optimization problem of interest. I will provide an instance of an optimization problem that is easy to solve classically, but leaves open the possibility to being difficult adiabatically. Aside from this concrete example, the work in this dissertation is predominantly mathematical and we focus on bounding the spectral gap. Our primary tool for doing this is spectral graph theory, which provides the most natural approach to this task by simply considering Dirichlet eigenvalues of subgraphs of host graphs. I will derive tight bounds for the gap of one-dimensional, hypercube, and general convex subgraphs. The techniques used will also adapt methods recently used by Andrews and Clutterbuck to prove the long-standing ``Fundamental Gap Conjecture''.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Metamamterials are 1D, 2D or 3D arrays of articial atoms. The articial atoms, called "meta-atoms", can be any component with tailorable electromagnetic properties, such as resonators, LC circuits, nano particles, and so on. By designing the properties of individual meta-atoms and the interaction created by putting them in a lattice, one can create a metamaterial with intriguing properties not found in nature. My Ph. D. work examines the meta-atoms based on radio frequency superconducting quantum interference devices (rf-SQUIDs); their tunability with dc magnetic field, rf magnetic field, and temperature are studied. The rf-SQUIDs are superconducting split ring resonators in which the usual capacitance is supplemented with a Josephson junction, which introduces strong nonlinearity in the rf properties. At relatively low rf magnetic field, a magnetic field tunability of the resonant frequency of up to 80 THz/Gauss by dc magnetic field is observed, and a total frequency tunability of 100% is achieved. The macroscopic quantum superconducting metamaterial also shows manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional electromagnetically induced transparency (EIT) or its classical analogs. A near complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bi-stability and can be tuned on/ off easily by altering rf and dc magnetic fields, temperature and history. Hysteretic in situ 100% tunability of transparency paves the way for auto-cloaking metamaterials, intensity dependent filters, and fast-tunable power limiters. An rf-SQUID metamaterial is shown to have qualitatively the same behavior as a single rf-SQUID with regards to dc flux, rf flux and temperature tuning. The two-tone response of self-resonant rf-SQUID meta-atoms and metamaterials is then studied here via intermodulation (IM) measurement over a broad range of tone frequencies and tone powers. A sharp onset followed by a surprising strongly suppressed IM region near the resonance is observed. This behavior can be understood employing methods in nonlinear dynamics; the sharp onset, and the gap of IM, are due to sudden state jumps during a beat of the two-tone sum input signal. The theory predicts that the IM can be manipulated with tone power, center frequency, frequency difference between the two tones, and temperature. This quantitative understanding potentially allows for the design of rf-SQUID metamaterials with either very low or very high IM response.