2 resultados para quality cost
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Children who have experienced a traumatic brain injury (TBI) are at risk for a variety of maladaptive cognitive, behavioral and social outcomes (Yeates et al., 2007). Research involving the social problem solving (SPS) abilities of children with TBI indicates a preference for lower level strategies when compared to children who have experienced an orthopedic injury (OI; Hanten et al., 2008, 2011). Research on SPS in non-injured populations has highlighted the significance of the identity of the social partner (Rubin et al., 2006). Within the pediatric TBI literature few studies have utilized friends as the social partner in SPS contexts, and fewer have used in-vivo SPS assessments. The current study aimed to build on existing research of SPS in children with TBI by utilizing an observational coding scheme to capture in-vivo problem solving behaviors between children with TBI and a best friend. The current study included children with TBI (n = 41), children with OI (n = 43), and a non-injured typically developing group (n = 41). All participants were observed completing a task with a friend and completed a measure of friendship quality. SPS was assessed using an observational coding scheme that captured SPS goals, strategies, and outcomes. It was expected children with TBI would produce fewer successes, fewer direct strategies, and more avoidant strategies. ANOVAs tested for group differences in SPS successes, direct strategies and avoidant strategies. Analyses were run to see if positive or negative friendship quality moderated the relation between group type and SPS behaviors. Group differences were found between the TBI and non-injured group in the SPS direct strategy of commands. No group differences were found for other SPS outcome variables of interest. Moderation analyses partially supported study hypotheses regarding the effect of friendship quality as a moderator variable. Additional analyses examined SPS goal-strategy sequencing and grouped SPS goals into high cost and low cost categories. Results showed a trend supporting the hypothesis that children with TBI had fewer SPS successes, especially with high cost goals, compared to the other two groups. Findings were discussed highlighting the moderation results involving children with severe TBI.
Resumo:
Nonpoint sources (NPS) pollution from agriculture is the leading source of water quality impairment in U.S. rivers and streams, and a major contributor to lakes, wetlands, estuaries and coastal waters (U.S. EPA 2016). Using data from a survey of farmers in Maryland, this dissertation examines the effects of a cost sharing policy designed to encourage adoption of conservation practices that reduce NPS pollution in the Chesapeake Bay watershed. This watershed is the site of the largest Total Maximum Daily Load (TMDL) implemented to date, making it an important setting in the U.S. for water quality policy. I study two main questions related to the reduction of NPS pollution from agriculture. First, I examine the issue of additionality of cost sharing payments by estimating the direct effect of cover crop cost sharing on the acres of cover crops, and the indirect effect of cover crop cost sharing on the acres of two other practices: conservation tillage and contour/strip cropping. A two-stage simultaneous equation approach is used to correct for voluntary self-selection into cost sharing programs and account for substitution effects among conservation practices. Quasi-random Halton sequences are employed to solve the system of equations for conservation practice acreage and to minimize the computational burden involved. By considering patterns of agronomic complementarity or substitution among conservation practices (Blum et al., 1997; USDA SARE, 2012), this analysis estimates water quality impacts of the crowding-in or crowding-out of private investment in conservation due to public incentive payments. Second, I connect the econometric behavioral results with model parameters from the EPA’s Chesapeake Bay Program to conduct a policy simulation on water quality effects. I expand the econometric model to also consider the potential loss of vegetative cover due to cropland incentive payments, or slippage (Lichtenberg and Smith-Ramirez, 2011). Econometric results are linked with the Chesapeake Bay Program watershed model to estimate the change in abatement levels and costs for nitrogen, phosphorus and sediment under various behavioral scenarios. Finally, I use inverse sampling weights to derive statewide abatement quantities and costs for each of these pollutants, comparing these with TMDL targets for agriculture in Maryland.