3 resultados para puzzles

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The poster was presented at the 2016 Tri-Chapter Meeting (MACMLA, NY-NJ and PHIL Chapters), The 3Ls - Librarians, Leadership and Learning on September 25, 2016 in Philadelphia, PA (http://macmla.libguides.com/tri-chapter2016-posters).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternate Reality Game (ARG) represent a new genre of transmedia practice where players hunt for scattered clues, make sense of disparate information, and solve puzzles to advance an ever-evolving storyline. Players participate in ARGs using multiple communications technologies, ranging from print materials to mobile devices. However, many interaction design challenges must be addressed to weave these everyday communication tools together into an immersive, participatory experience. Transmedia design is not an everyday process. Designers must create and connect story bits across multiple media (video, audio, text) and multiple platforms (phones, computers, physical spaces). Furthermore, they must engage with players of varying skill levels. Few studies to-date have explored the design process of ARGs in learning contexts. Fewer still have focused on challenges involved in designing for youth (13-17 years old). In this study, I explore the process of designing ARGs as vehicles for promoting information literacy and participatory culture for adolescents (13-17 years old). Two ARG design scenarios, distinguished by target learning environment (formal and informal context) and target audience (adolescents), comprise the two cases that I examine. Through my analysis of these two design cases, I articulate several unique challenges faced by designers who create interactive, transmedia stories for – and with – youth. Drawing from these design challenges, I derive a repertoire of design strategies that future designers and researchers may use to create and implement ARGs for teens in learning contexts. In particular, I propose a narrative design framework that allows for the categorization of ARGs as storytelling constructs that lie along a continuum of participation and interaction. The framework can serve as an analytic tool for researchers and a guide for designers. In addition, I establish a framework of social roles that designers may employ to craft transmedia narratives before live launch and to promote and scaffold player participation after play begins. Overall, the contributions of my study include theoretical insights that may advance our understanding of narrative design and analysis as well as more practical design implications for designers and practitioners seeking to incorporate transmedia features into learning experiences that target youth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The past several years have seen the surprising and rapid rise of Bitcoin and other “cryptocurrencies.” These are decentralized peer-to-peer networks that allow users to transmit money, tocompose financial instruments, and to enforce contracts between mutually distrusting peers, andthat show great promise as a foundation for financial infrastructure that is more robust, efficientand equitable than ours today. However, it is difficult to reason about the security of cryptocurrencies. Bitcoin is a complex system, comprising many intricate and subtly-interacting protocol layers. At each layer it features design innovations that (prior to our work) have not undergone any rigorous analysis. Compounding the challenge, Bitcoin is but one of hundreds of competing cryptocurrencies in an ecosystem that is constantly evolving. The goal of this thesis is to formally reason about the security of cryptocurrencies, reining in their complexity, and providing well-defined and justified statements of their guarantees. We provide a formal specification and construction for each layer of an abstract cryptocurrency protocol, and prove that our constructions satisfy their specifications. The contributions of this thesis are centered around two new abstractions: “scratch-off puzzles,” and the “blockchain functionality” model. Scratch-off puzzles are a generalization of the Bitcoin “mining” algorithm, its most iconic and novel design feature. We show how to provide secure upgrades to a cryptocurrency by instantiating the protocol with alternative puzzle schemes. We construct secure puzzles that address important and well-known challenges facing Bitcoin today, including wasted energy and dangerous coalitions. The blockchain functionality is a general-purpose model of a cryptocurrency rooted in the “Universal Composability” cryptography theory. We use this model to express a wide range of applications, including transparent “smart contracts” (like those featured in Bitcoin and Ethereum), and also privacy-preserving applications like sealed-bid auctions. We also construct a new protocol compiler, called Hawk, which translates user-provided specifications into privacy-preserving protocols based on zero-knowledge proofs.