3 resultados para probabilistic ranking

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past decade, systems that extract information from millions of Internet documents have become commonplace. Knowledge graphs -- structured knowledge bases that describe entities, their attributes and the relationships between them -- are a powerful tool for understanding and organizing this vast amount of information. However, a significant obstacle to knowledge graph construction is the unreliability of the extracted information, due to noise and ambiguity in the underlying data or errors made by the extraction system and the complexity of reasoning about the dependencies between these noisy extractions. My dissertation addresses these challenges by exploiting the interdependencies between facts to improve the quality of the knowledge graph in a scalable framework. I introduce a new approach called knowledge graph identification (KGI), which resolves the entities, attributes and relationships in the knowledge graph by incorporating uncertain extractions from multiple sources, entity co-references, and ontological constraints. I define a probability distribution over possible knowledge graphs and infer the most probable knowledge graph using a combination of probabilistic and logical reasoning. Such probabilistic models are frequently dismissed due to scalability concerns, but my implementation of KGI maintains tractable performance on large problems through the use of hinge-loss Markov random fields, which have a convex inference objective. This allows the inference of large knowledge graphs using 4M facts and 20M ground constraints in 2 hours. To further scale the solution, I develop a distributed approach to the KGI problem which runs in parallel across multiple machines, reducing inference time by 90%. Finally, I extend my model to the streaming setting, where a knowledge graph is continuously updated by incorporating newly extracted facts. I devise a general approach for approximately updating inference in convex probabilistic models, and quantify the approximation error by defining and bounding inference regret for online models. Together, my work retains the attractive features of probabilistic models while providing the scalability necessary for large-scale knowledge graph construction. These models have been applied on a number of real-world knowledge graph projects, including the NELL project at Carnegie Mellon and the Google Knowledge Graph.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Edge-labeled graphs have proliferated rapidly over the last decade due to the increased popularity of social networks and the Semantic Web. In social networks, relationships between people are represented by edges and each edge is labeled with a semantic annotation. Hence, a huge single graph can express many different relationships between entities. The Semantic Web represents each single fragment of knowledge as a triple (subject, predicate, object), which is conceptually identical to an edge from subject to object labeled with predicates. A set of triples constitutes an edge-labeled graph on which knowledge inference is performed. Subgraph matching has been extensively used as a query language for patterns in the context of edge-labeled graphs. For example, in social networks, users can specify a subgraph matching query to find all people that have certain neighborhood relationships. Heavily used fragments of the SPARQL query language for the Semantic Web and graph queries of other graph DBMS can also be viewed as subgraph matching over large graphs. Though subgraph matching has been extensively studied as a query paradigm in the Semantic Web and in social networks, a user can get a large number of answers in response to a query. These answers can be shown to the user in accordance with an importance ranking. In this thesis proposal, we present four different scoring models along with scalable algorithms to find the top-k answers via a suite of intelligent pruning techniques. The suggested models consist of a practically important subset of the SPARQL query language augmented with some additional useful features. The first model called Substitution Importance Query (SIQ) identifies the top-k answers whose scores are calculated from matched vertices' properties in each answer in accordance with a user-specified notion of importance. The second model called Vertex Importance Query (VIQ) identifies important vertices in accordance with a user-defined scoring method that builds on top of various subgraphs articulated by the user. Approximate Importance Query (AIQ), our third model, allows partial and inexact matchings and returns top-k of them with a user-specified approximation terms and scoring functions. In the fourth model called Probabilistic Importance Query (PIQ), a query consists of several sub-blocks: one mandatory block that must be mapped and other blocks that can be opportunistically mapped. The probability is calculated from various aspects of answers such as the number of mapped blocks, vertices' properties in each block and so on and the most top-k probable answers are returned. An important distinguishing feature of our work is that we allow the user a huge amount of freedom in specifying: (i) what pattern and approximation he considers important, (ii) how to score answers - irrespective of whether they are vertices or substitution, and (iii) how to combine and aggregate scores generated by multiple patterns and/or multiple substitutions. Because so much power is given to the user, indexing is more challenging than in situations where additional restrictions are imposed on the queries the user can ask. The proposed algorithms for the first model can also be used for answering SPARQL queries with ORDER BY and LIMIT, and the method for the second model also works for SPARQL queries with GROUP BY, ORDER BY and LIMIT. We test our algorithms on multiple real-world graph databases, showing that our algorithms are far more efficient than popular triple stores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Object recognition has long been a core problem in computer vision. To improve object spatial support and speed up object localization for object recognition, generating high-quality category-independent object proposals as the input for object recognition system has drawn attention recently. Given an image, we generate a limited number of high-quality and category-independent object proposals in advance and used as inputs for many computer vision tasks. We present an efficient dictionary-based model for image classification task. We further extend the work to a discriminative dictionary learning method for tensor sparse coding. In the first part, a multi-scale greedy-based object proposal generation approach is presented. Based on the multi-scale nature of objects in images, our approach is built on top of a hierarchical segmentation. We first identify the representative and diverse exemplar clusters within each scale. Object proposals are obtained by selecting a subset from the multi-scale segment pool via maximizing a submodular objective function, which consists of a weighted coverage term, a single-scale diversity term and a multi-scale reward term. The weighted coverage term forces the selected set of object proposals to be representative and compact; the single-scale diversity term encourages choosing segments from different exemplar clusters so that they will cover as many object patterns as possible; the multi-scale reward term encourages the selected proposals to be discriminative and selected from multiple layers generated by the hierarchical image segmentation. The experimental results on the Berkeley Segmentation Dataset and PASCAL VOC2012 segmentation dataset demonstrate the accuracy and efficiency of our object proposal model. Additionally, we validate our object proposals in simultaneous segmentation and detection and outperform the state-of-art performance. To classify the object in the image, we design a discriminative, structural low-rank framework for image classification. We use a supervised learning method to construct a discriminative and reconstructive dictionary. By introducing an ideal regularization term, we perform low-rank matrix recovery for contaminated training data from all categories simultaneously without losing structural information. A discriminative low-rank representation for images with respect to the constructed dictionary is obtained. With semantic structure information and strong identification capability, this representation is good for classification tasks even using a simple linear multi-classifier.