4 resultados para privacy and security policies

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Secure computation involves multiple parties computing a common function while keeping their inputs private, and is a growing field of cryptography due to its potential for maintaining privacy guarantees in real-world applications. However, current secure computation protocols are not yet efficient enough to be used in practice. We argue that this is due to much of the research effort being focused on generality rather than specificity. Namely, current research tends to focus on constructing and improving protocols for the strongest notions of security or for an arbitrary number of parties. However, in real-world deployments, these security notions are often too strong, or the number of parties running a protocol would be smaller. In this thesis we make several steps towards bridging the efficiency gap of secure computation by focusing on constructing efficient protocols for specific real-world settings and security models. In particular, we make the following four contributions: - We show an efficient (when amortized over multiple runs) maliciously secure two-party secure computation (2PC) protocol in the multiple-execution setting, where the same function is computed multiple times by the same pair of parties. - We improve the efficiency of 2PC protocols in the publicly verifiable covert security model, where a party can cheat with some probability but if it gets caught then the honest party obtains a certificate proving that the given party cheated. - We show how to optimize existing 2PC protocols when the function to be computed includes predicate checks on its inputs. - We demonstrate an efficient maliciously secure protocol in the three-party setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose three research problems to explore the relations between trust and security in the setting of distributed computation. In the first problem, we study trust-based adversary detection in distributed consensus computation. The adversaries we consider behave arbitrarily disobeying the consensus protocol. We propose a trust-based consensus algorithm with local and global trust evaluations. The algorithm can be abstracted using a two-layer structure with the top layer running a trust-based consensus algorithm and the bottom layer as a subroutine executing a global trust update scheme. We utilize a set of pre-trusted nodes, headers, to propagate local trust opinions throughout the network. This two-layer framework is flexible in that it can be easily extensible to contain more complicated decision rules, and global trust schemes. The first problem assumes that normal nodes are homogeneous, i.e. it is guaranteed that a normal node always behaves as it is programmed. In the second and third problems however, we assume that nodes are heterogeneous, i.e, given a task, the probability that a node generates a correct answer varies from node to node. The adversaries considered in these two problems are workers from the open crowd who are either investing little efforts in the tasks assigned to them or intentionally give wrong answers to questions. In the second part of the thesis, we consider a typical crowdsourcing task that aggregates input from multiple workers as a problem in information fusion. To cope with the issue of noisy and sometimes malicious input from workers, trust is used to model workers' expertise. In a multi-domain knowledge learning task, however, using scalar-valued trust to model a worker's performance is not sufficient to reflect the worker's trustworthiness in each of the domains. To address this issue, we propose a probabilistic model to jointly infer multi-dimensional trust of workers, multi-domain properties of questions, and true labels of questions. Our model is very flexible and extensible to incorporate metadata associated with questions. To show that, we further propose two extended models, one of which handles input tasks with real-valued features and the other handles tasks with text features by incorporating topic models. Our models can effectively recover trust vectors of workers, which can be very useful in task assignment adaptive to workers' trust in the future. These results can be applied for fusion of information from multiple data sources like sensors, human input, machine learning results, or a hybrid of them. In the second subproblem, we address crowdsourcing with adversaries under logical constraints. We observe that questions are often not independent in real life applications. Instead, there are logical relations between them. Similarly, workers that provide answers are not independent of each other either. Answers given by workers with similar attributes tend to be correlated. Therefore, we propose a novel unified graphical model consisting of two layers. The top layer encodes domain knowledge which allows users to express logical relations using first-order logic rules and the bottom layer encodes a traditional crowdsourcing graphical model. Our model can be seen as a generalized probabilistic soft logic framework that encodes both logical relations and probabilistic dependencies. To solve the collective inference problem efficiently, we have devised a scalable joint inference algorithm based on the alternating direction method of multipliers. The third part of the thesis considers the problem of optimal assignment under budget constraints when workers are unreliable and sometimes malicious. In a real crowdsourcing market, each answer obtained from a worker incurs cost. The cost is associated with both the level of trustworthiness of workers and the difficulty of tasks. Typically, access to expert-level (more trustworthy) workers is more expensive than to average crowd and completion of a challenging task is more costly than a click-away question. In this problem, we address the problem of optimal assignment of heterogeneous tasks to workers of varying trust levels with budget constraints. Specifically, we design a trust-aware task allocation algorithm that takes as inputs the estimated trust of workers and pre-set budget, and outputs the optimal assignment of tasks to workers. We derive the bound of total error probability that relates to budget, trustworthiness of crowds, and costs of obtaining labels from crowds naturally. Higher budget, more trustworthy crowds, and less costly jobs result in a lower theoretical bound. Our allocation scheme does not depend on the specific design of the trust evaluation component. Therefore, it can be combined with generic trust evaluation algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Secure Multi-party Computation (MPC) enables a set of parties to collaboratively compute, using cryptographic protocols, a function over their private data in a way that the participants do not see each other's data, they only see the final output. Typical MPC examples include statistical computations over joint private data, private set intersection, and auctions. While these applications are examples of monolithic MPC, richer MPC applications move between "normal" (i.e., per-party local) and "secure" (i.e., joint, multi-party secure) modes repeatedly, resulting overall in mixed-mode computations. For example, we might use MPC to implement the role of the dealer in a game of mental poker -- the game will be divided into rounds of local decision-making (e.g. bidding) and joint interaction (e.g. dealing). Mixed-mode computations are also used to improve performance over monolithic secure computations. Starting with the Fairplay project, several MPC frameworks have been proposed in the last decade to help programmers write MPC applications in a high-level language, while the toolchain manages the low-level details. However, these frameworks are either not expressive enough to allow writing mixed-mode applications or lack formal specification, and reasoning capabilities, thereby diminishing the parties' trust in such tools, and the programs written using them. Furthermore, none of the frameworks provides a verified toolchain to run the MPC programs, leaving the potential of security holes that can compromise the privacy of parties' data. This dissertation presents language-based techniques to make MPC more practical and trustworthy. First, it presents the design and implementation of a new MPC Domain Specific Language, called Wysteria, for writing rich mixed-mode MPC applications. Wysteria provides several benefits over previous languages, including a conceptual single thread of control, generic support for more than two parties, high-level abstractions for secret shares, and a fully formalized type system and operational semantics. Using Wysteria, we have implemented several MPC applications, including, for the first time, a card dealing application. The dissertation next presents Wys*, an embedding of Wysteria in F*, a full-featured verification oriented programming language. Wys* improves on Wysteria along three lines: (a) It enables programmers to formally verify the correctness and security properties of their programs. As far as we know, Wys* is the first language to provide verification capabilities for MPC programs. (b) It provides a partially verified toolchain to run MPC programs, and finally (c) It enables the MPC programs to use, with no extra effort, standard language constructs from the host language F*, thereby making it more usable and scalable. Finally, the dissertation develops static analyses that help optimize monolithic MPC programs into mixed-mode MPC programs, while providing similar privacy guarantees as the monolithic versions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turkey is a non-nuclear member of a nuclear alliance in a region where nuclear proliferation is of particular concern. As the only North Atlantic Treaty Organization (NATO) member that has a border with the Middle East, Turkish officials argue that Turkey cannot solely rely on NATO guarantees in addressing the regional security challenges. However, Turkey has not been able to formulate a security policy that reconciles its quest for independence, its NATO membership, the bilateral relationship with the United States, and regional engagement in the Middle East. This dissertation assesses the strategic implications of Turkey’s perceptions of the U.S./NATO nuclear and conventional deterrence on nuclear issues. It explores three case studies by the process tracing of Turkish policymakers’ nuclear-related decisions on U.S. tactical nuclear weapons deployed in Europe, national air and missile defense, and Iran’s nuclear program. The study finds that the principles of Turkish security policymaking do not incorporate a fundamentally different reasoning on nuclear issues than conventional deterrence. Nuclear weapons and their delivery systems do not have a defining role in Turkish security and defense strategy. The decisions are mainly guided by non-nuclear considerations such as Alliance politics, modernization of the domestic defense industry, and regional influence. The dissertation argues that Turkey could formulate more effective and less risky security policies on nuclear issues by emphasizing the cooperative security approaches within the NATO Alliance over confrontational measures. The findings of this dissertation reveal that a major transformation of Turkish security policymaking is required to end the crisis of confidence with NATO, redefinition of the strategic partnership with the US, and a more cautious approach toward the Middle East. The dissertation argues that Turkey should promote proactive measures to reduce, contain, and counter risks before they develop into real threats, as well as contribute to developing consensual confidence-building measures to reduce uncertainty.