2 resultados para principal sparse non-negative matrix factorization
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Surface ozone is formed in the presence of NOx (NO + NO2) and volatile organic compounds (VOCs) and is hazardous to human health. A better understanding of these precursors is needed for developing effective policies to improve air quality. To evaluate the year-to-year changes in source contributions to total VOCs, Positive Matrix Factorization (PMF) was used to perform source apportionment using available hourly observations from June through August at a Photochemical Assessment Monitoring Station (PAMS) in Essex, MD for each year from 2007-2015. Results suggest that while gasoline and vehicle exhaust emissions have fallen, the contribution of natural gas sources to total VOCs has risen. To investigate this increasing natural gas influence, ethane measurements from PAMS sites in Essex, MD and Washington, D.C. were examined. Following a period of decline, daytime ethane concentrations have increased significantly after 2009. This trend appears to be linked with the rapid shale gas production in upwind, neighboring states, especially Pennsylvania and West Virginia. Back-trajectory analyses similarly show that ethane concentrations at these monitors were significantly greater if air parcels had passed through counties containing a high density of unconventional natural gas wells. In addition to VOC emissions, the compressors and engines involved with hydraulic fracturing operations also emit NOx and particulate matter (PM). The Community Multi-scale Air Quality (CMAQ) Model was used to simulate air quality for the Eastern U.S. in 2020, including emissions from shale gas operations in the Appalachian Basin. Predicted concentrations of ozone and PM show the largest decreases when these natural gas resources are hypothetically used to convert coal-fired power plants, despite the increased emissions from hydraulic fracturing operations expanded into all possible shale regions in the Appalachian Basin. While not as clean as burning natural gas, emissions of NOx from coal-fired power plants can be reduced by utilizing post-combustion controls. However, even though capital investment has already been made, these controls are not always operated at optimal rates. CMAQ simulations for the Eastern U.S. in 2018 show ozone concentrations decrease by ~5 ppb when controls on coal-fired power plants limit NOx emissions to historically best rates.
Resumo:
We propose a positive, accurate moment closure for linear kinetic transport equations based on a filtered spherical harmonic (FP_N) expansion in the angular variable. The FP_N moment equations are accurate approximations to linear kinetic equations, but they are known to suffer from the occurrence of unphysical, negative particle concentrations. The new positive filtered P_N (FP_N+) closure is developed to address this issue. The FP_N+ closure approximates the kinetic distribution by a spherical harmonic expansion that is non-negative on a finite, predetermined set of quadrature points. With an appropriate numerical PDE solver, the FP_N+ closure generates particle concentrations that are guaranteed to be non-negative. Under an additional, mild regularity assumption, we prove that as the moment order tends to infinity, the FP_N+ approximation converges, in the L2 sense, at the same rate as the FP_N approximation; numerical tests suggest that this assumption may not be necessary. By numerical experiments on the challenging line source benchmark problem, we confirm that the FP_N+ method indeed produces accurate and non-negative solutions. To apply the FP_N+ closure on problems at large temporal-spatial scales, we develop a positive asymptotic preserving (AP) numerical PDE solver. We prove that the propose AP scheme maintains stability and accuracy with standard mesh sizes at large temporal-spatial scales, while, for generic numerical schemes, excessive refinements on temporal-spatial meshes are required. We also show that the proposed scheme preserves positivity of the particle concentration, under some time step restriction. Numerical results confirm that the proposed AP scheme is capable for solving linear transport equations at large temporal-spatial scales, for which a generic scheme could fail. Constrained optimization problems are involved in the formulation of the FP_N+ closure to enforce non-negativity of the FP_N+ approximation on the set of quadrature points. These optimization problems can be written as strictly convex quadratic programs (CQPs) with a large number of inequality constraints. To efficiently solve the CQPs, we propose a constraint-reduced variant of a Mehrotra-predictor-corrector algorithm, with a novel constraint selection rule. We prove that, under appropriate assumptions, the proposed optimization algorithm converges globally to the solution at a locally q-quadratic rate. We test the algorithm on randomly generated problems, and the numerical results indicate that the combination of the proposed algorithm and the constraint selection rule outperforms other compared constraint-reduced algorithms, especially for problems with many more inequality constraints than variables.