3 resultados para portable instruments
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The problem was to determine whether a method of aural and visual vocal training that included a program of portable electronic piano keyboard experience would be more effective in teaching sight-singing skills to novice high school chorus students than a method that included only aural and visual vocal training. A sub-problem was to determine whether novice chorus students enjoyed playing electronic keyboards in chorus as a reinforcement experience in sight-singing training. Students were randomly assigned to two treatment groups, tested with the Musical Aptitude Profile, Tonal Imagery, part A, and then trained separately. The experimental group sang repetitions of melodic patterns and utilized techniques associated with the Kodály Method while simultaneously playing keyboard. The comparison group received a similar treatment without using keyboards. The students were pre- and post-tested in sight-singing using the Vocal Sight-Reading Inventory. Results of the Analysis of Covariance using MAP scores as the covariate revealed no significant difference (p<.05) between post-test scores of the two groups. Improvement was noted in 96% of students from pre-test to post-test regardless of grouping. The repeated measures ANOVA revealed a significant relationship (p<.006) between aptitude group and post-test score. High aptitude students in both groups were found to benefit more from the training than low aptitude students. High aptitude keyboard group students achieved an average gain score that was 8.67 points higher than the comparison group. Of the total experimental group, 92% enjoyed playing keyboards in chorus. It is recommended that future research be undertaken to study the use of keyboards with advanced high school choruses and with uncertain singers in the high school chorus. Research is also needed to develop graded, valid, and reliable sight-singing tests for use in high school chorus. Techniques of the Kodály Method should be further investigated for use in high school sight-singing training.
Resumo:
The purpose of this dissertation is to produce a new Harmonie arrangement of Mozart’s Die Zauberflöte suitable for modern performance, bringing Joseph Heidenreich’s 1782 arrangement—one of the great treasures of the wind repertoire—to life for future performers and audiences. I took advantage of the capabilities of modern wind instruments and performance techniques, and employed other instruments normally found in the modern wind ensemble to create a work in the tradition of Heidenreich’s that restored as much of Mozart’s original thinking as possible. I expanded the Harmonie band to include flute and string bass. Other instruments provide special effects, a traditional role for wind instruments in the Classical opera orchestra. This arrangement is conceived to be performed with the original vocal soloists, making it a viable option for concert performance or for smaller staged productions. It is also intended to allow the wind players to be onstage with the singers, becoming part of the dramatic action while simultaneously serving as the “opera orchestra.” This allows creative staging possibilities, and offers the wind players an opportunity to explore new aspects of performing. My arrangement also restores Mozart’s music to its original keys and retains much of his original wind scoring. This arrangement expands the possibilities for collaboration between opera studios, voice departments or community opera companies and wind ensembles. A suite for winds without voices (currently in production) will allow conductors to program this major work from the Classical era without dedicating a concert program to the complete opera. Excerpted arias and duets from this arrangement provide vocalists the option of using chamber wind accompaniment on recitals. The door is now open to arrangements of other operas by composers such as Mozart, Rossini and Weber, adding new repertoire for chamber winds and bringing great music to life in a new way.
Resumo:
A battery powered air-conditioning device was developed to provide an improved thermal comfort level for individuals in inadequately cooled environments. This device is a battery powered air-conditioning system with the phase change material (PCM) for heat storage. The condenser heat is stored in the PCM during the cooling operation and is discharged while the battery is charged by using the vapor compression cycle as a thermosiphon loop. The main focus of the current research was on the development of the cooling system. The cooling capacity of the vapor compression cycle measured was 165.6 W with system COP at 2.85. It was able to provide 2 hours cooling without discharging heat to the ambient. The PCM was recharged in nearly 8 hours under thermosiphon mode.