2 resultados para palveluiden laa-tuvaatimukset (QoS)
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Most second language researchers agree that there is a role for corrective feedback in second language writing classes. However, many unanswered questions remain concerning which linguistic features to target and the type and amount of feedback to offer. This study examined two new pieces of writing by 151 learners of English as a Second Language (ESL), in order to investigate the effect of direct and metalinguistic written feedback on errors with the simple past tense, the present perfect tense, dropped pronouns, and pronominal duplication. This inquiry also considered the extent to which learner differences in language-analytic ability (LAA), as measured by the LLAMA F, mediated the effects of these two types of explicit written corrective feedback. Learners in the feedback groups were provided with corrective feedback on two essays, after which learners in all three groups completed two additional writing tasks to determine whether or not the provision of corrective feedback led to greater gains in accuracy compared to no feedback. Both treatment groups, direct and metalinguistic, performed better than the comparison group on new pieces of writing immediately following the treatment sessions, yet direct feedback was more durable than metalinguistic feedback for one structure, the simple past tense. Participants with greater LAA proved more likely to achieve gains in the direct feedback group than in the metalinguistic group, whereas learners with lower LAA benefited more from metalinguistic feedback. Overall, the findings of the present study confirm the results of prior studies that have found a positive role for written corrective feedback in instructed second language acquisition.
Resumo:
Wireless power transfer (WPT) and radio frequency (RF)-based energy har- vesting arouses a new wireless network paradigm termed as wireless powered com- munication network (WPCN), where some energy-constrained nodes are enabled to harvest energy from the RF signals transferred by other energy-sufficient nodes to support the communication operations in the network, which brings a promising approach for future energy-constrained wireless network design. In this paper, we focus on the optimal WPCN design. We consider a net- work composed of two communication groups, where the first group has sufficient power supply but no available bandwidth, and the second group has licensed band- width but very limited power to perform required information transmission. For such a system, we introduce the power and bandwidth cooperation between the two groups so that both group can accomplish their expected information delivering tasks. Multiple antennas are employed at the hybrid access point (H-AP) to en- hance both energy and information transfer efficiency and the cooperative relaying is employed to help the power-limited group to enhance its information transmission throughput. Compared with existing works, cooperative relaying, time assignment, power allocation, and energy beamforming are jointly designed in a single system. Firstly, we propose a cooperative transmission protocol for the considered system, where group 1 transmits some power to group 2 to help group 2 with information transmission and then group 2 gives some bandwidth to group 1 in return. Sec- ondly, to explore the information transmission performance limit of the system, we formulate two optimization problems to maximize the system weighted sum rate by jointly optimizing the time assignment, power allocation, and energy beamforming under two different power constraints, i.e., the fixed power constraint and the aver- age power constraint, respectively. In order to make the cooperation between the two groups meaningful and guarantee the quality of service (QoS) requirements of both groups, the minimal required data rates of the two groups are considered as constraints for the optimal system design. As both problems are non-convex and have no known solutions, we solve it by using proper variable substitutions and the semi-definite relaxation (SDR). We theoretically prove that our proposed solution method can guarantee to find the global optimal solution. Thirdly, consider that the WPCN has promising application potentials in future energy-constrained net- works, e.g., wireless sensor network (WSN), wireless body area network (WBAN) and Internet of Things (IoT), where the power consumption is very critical. We investigate the minimal power consumption optimal design for the considered co- operation WPCN. For this, we formulate an optimization problem to minimize the total consumed power by jointly optimizing the time assignment, power allocation, and energy beamforming under required data rate constraints. As the problem is also non-convex and has no known solutions, we solve it by using some variable substitutions and the SDR method. We also theoretically prove that our proposed solution method for the minimal power consumption design guarantees the global optimal solution. Extensive experimental results are provided to discuss the system performance behaviors, which provide some useful insights for future WPCN design. It shows that the average power constrained system achieves higher weighted sum rate than the fixed power constrained system. Besides, it also shows that in such a WPCN, relay should be placed closer to the multi-antenna H-AP to achieve higher weighted sum rate and consume lower total power.