4 resultados para orders of worth

em DRUM (Digital Repository at the University of Maryland)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nanocomposite energetics are a relatively new class of materials that combine nanoscale fuels and oxidizers to allow for the rapid release of large amounts of energy. In thermite systems (metal fuel with metal oxide oxidizer), the use of nanomaterials has been illustrated to increase reactivity by multiple orders of magnitude as a result of the higher specific surface area and smaller diffusion length scales. However, the highly dynamic and nanoscale processes intrinsic to these materials, as well as heating rate dependencies, have limited our understanding of the underlying processes that control reaction and propagation. For my dissertation, I have employed a variety of experimental approaches that have allowed me to probe these processes at heating rates representative of free combustion with the goal of understanding the fundamental mechanisms. Dynamic transmission electron microscopy (DTEM) was used to study the in situ morphological change that occurs in nanocomposite thermite materials subjected to rapid (10^11 K/s) heating. Aluminum nanoparticle (Al-NP) aggregates were found to lose their nanostructure through coalescence in as little as 10 ns, which is much faster than any other timescale of combustion. Further study of nanoscale reaction with CuO determined that a condensed phase interfacial reaction could occur within 0.5-5 µs in a manner consistent with bulk reaction, which supports that this mechanism plays a dominant role in the overall reaction process. Ta nanocomposites were also studied to determine if a high melting point (3280 K) affects the loss of nanostructure and rate of reaction. The condensed phase reaction pathway was further explored using reactive multilayers sputter deposited onto thin Pt wires to allow for temperature jump (T-Jump) heating at rates of ~5x10^5 K/s. High speed video and a time of flight mass spectrometry (TOFMS) were used to observe ignition temperature and speciation as a function of bilayer thickness. The ignition process was modeled and a low activation energy for effective diffusivity was determined. T-Jump TOFMS along with constant volume combustion cell studies were also used to determine the effect of gas release in nanoparticle systems by comparing the reaction properties of CuO and Cu2O.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Incorporation of carbon nanostructures in metals is desirable to combine the strongly bonded electrons in the metal and the free electrons in carbon nanostructures that give rise to high ampacity and high conductivity, respectively. Carbon in copper has the potential to impact industries such as: building construction, power generation and transmission, and microelectronics. This thesis focuses on the structure and properties of bulk and thin films of a new material, Cu covetic, that contains carbon in concentrations up to 16 at.%. X-ray photoelectron spectroscopy (XPS) shows C 1s peak with both sp2 and sp3 bonded C measuring up to 3.5 wt.% (16 at.%). High resolution transmission electron microscopy and electron diffraction of bulk covetic samples show a modulated structure of ≈ 1.6 nm along several crystallographic directions in regions that have high C content suggesting that the carbon incorporates into the copper lattice forming a network. Electron energy loss spectra (EELS) from covetics reveal that the level of graphitization from the source material, activated carbon, is maintained in the covetic structure. Bulk Cu covetics have a slight increase in the lattice constant, as well as <111> texturing, or possibly a different structure, compared to pure Cu. Density functional theory calculations predict bonding between C and Cu at the edges and defects of graphene sheets. The electrical resistivity of bulk covetics first increases and then decreases with increasing C content. Cu covetic films were deposited using e-beam and pulsed laser deposition (PLD) at different temperatures. No copper oxide or any allotropes of carbon are present in the films. The e-beam films show enhanced electrical and optical properties when compared to pure Cu films of the same thickness even though no carbon was detected by XPS or EELS. They also have slightly higher ampacity than Cu metal films. EELS analysis of the C-K-edge in the PLD films indicate that graphitic carbon is transferred from the bulk into the films with uniform carbon distribution. PLD films exhibit flatter and higher transmittance curves and sheet resistance two orders of magnitude lower than e-beam films leading to a high figure of merit as transparent conductors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polymer aluminum electrolytic capacitors were introduced to provide an alternative to liquid electrolytic capacitors. Polymer electrolytic capacitor electric parameters of capacitance and ESR are less temperature dependent than those of liquid aluminum electrolytic capacitors. Furthermore, the electrical conductivity of the polymer used in these capacitors (poly-3,4ethylenedioxithiophene) is orders of magnitude higher than the electrolytes used in liquid aluminum electrolytic capacitors, resulting in capacitors with much lower equivalent series resistance which are suitable for use in high ripple-current applications. The presence of the moisture-sensitive polymer PEDOT introduces concerns on the reliability of polymer aluminum capacitors in high humidity conditions. Highly accelerated stress testing (or HAST) (110ºC, 85% relative humidity) of polymer aluminum capacitors in which the parts were subjected to unbiased HAST conditions for 700 hours was done to understand the design factors that contribute to the susceptibility to degradation of a polymer aluminum electrolytic capacitor exposed to HAST conditions. A large scale study involving capacitors of different electrical ratings (2.5V – 16V, 100µF – 470 µF), mounting types (surface-mount and through-hole) and manufacturers (6 different manufacturers) was done to determine a relationship between package geometry and reliability in high temperature-humidity conditions. A Geometry-Based HAST test in which the part selection limited variations between capacitor samples to geometric differences only was done to analyze the effect of package geometry on humidity-driven degradation more closely. Raman spectroscopy, x-ray imaging, environmental scanning electron microscopy, and destructive analysis of the capacitors after HAST exposure was done to determine the failure mechanisms of polymer aluminum capacitors under high temperature-humidity conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Environmental indicators have been proposed as a means to assess ecological integrity, monitoring both chemical and biological stressors. In this study, we used nestling bald eagles as indicators to quantify direct or indirect tertiary-level contaminant exposure. The spatial and temporal trends of polychlorinated biphenyl (PCB) congeners were evaluated in nestling plasma from 1999–2014. Two hexa-chlorinated congeners, PCB-138 and 153, were detected with the highest frequency and greatest concentrations throughout Michigan. Less-chlorinated congeners such as PCB-52 and 66 however, comprised a greater percentage of total PCB concentrations in nestlings proximate to urbanized areas, such as along the shorelines of Lake Erie. Toxic equivalents were greatest in the samples collected from nestlings located on Lake Erie, followed by the other Great Lakes spatial regions. Nestling plasma samples were also used to measure concentrations of the most heavily-used group of flame retardants, brominated diphenyl ethers (BDEs), and three groups of alternative flame retardants, non-BDE Brominated Flame Retardants (NBFRS), Dechloranes, and organophosphate esters (OPs). BDE-47, 99 and 100 contributed the greatest to total BDE concentrations. Concentrations of structurally similar NBFRs found in this study and recent atmospheric studies indicate that they are largely used as replacements to previously used BDE mixtures. A variety of Dechloranes, or derivatives of Mirex and Dechlorane Plus, were measured. Although, measured at lesser concentrations, environmental behavior of these compounds may be similar to mirex and warrant future research in aquatic species. Concentrations of OPs in nestling plasma were two to three orders of magnitude greater than all other groups of flame retardants. In addition to chemical indicators, bald eagles have also been proposed as indicators to identify ecological stressors using population measures that are tied to the fitness of individuals and populations. Using mortality as a population vitality rate, vehicle collisions were found to be the main source of mortality with a greater incidence for females during white-tailed deer (Odocoileus virginianus) hunting months and spring snow-melt. Lead poisoning was the second greatest source of mortality, with sources likely due to unretrieved hunter-killed, white-tailed deer carcasses, and possibly exacerbated by density-dependent effects due to the growing population in Michigan.