9 resultados para no-net-loss goal

em DRUM (Digital Repository at the University of Maryland)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obesity, currently an epidemic, is a difficult disease to combat because it is marked by both a change in body weight and an underlying dysregulation in metabolism, making consistent weight loss challenging. We sought to elucidate this metabolic dysregulation resulting from diet-induced obesity (DIO) that persists through subsequent weight loss. We hypothesized that weight gain imparts a change in “metabolic set point” persisting through subsequent weight loss and that this modification may involve a persistent change in hepatic AMP-activated protein kinase (AMPK), a key energy-sensing enzyme in the body. To test these hypotheses, we tracked metabolic perturbations through this period, measuring changes in hepatic AMPK. To further understand the role of AMPK we used AICAR, an AMPK activator, following DIO. Our findings established a more dynamic metabolic model of DIO and subsequent weight loss. We observed hepatic AMPK elevation following weight loss, but AICAR administration without similar dieting was unsuccessful in improving metabolic dysregulation. Our findings provide an approach to modeling DIO and subsequent dieting that can be built upon in future studies and hopefully contribute to more effective long-term treatments of obesity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hemorrhage is the leading cause of preventable death after a traumatic injury. Commercial hemostatic agents exist, but have various disadvantages including high cost, short shelf-lives, or secondary tissue damage. Polymer hydrogels provide a promising platform for the use of both biological and mechanical mechanisms to accelerate natural hemostasis and control hemorrhage. The goal of this work was to develop hydrogel particles composed of chitosan and alginate and loaded with zeolite in order to stop blood loss by targeting multiple hemostatic mechanisms. Several ii particle compositions were synthesized and then characterized through swelling studies, particle sizing, Scanning Electron Microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FTIR). The in vitro interactions of the particles were evaluated through coagulation, degradation, platelet aggregation, and cytotoxicity studies. The results indicate that 4% alginate, 1% chitosan, 4% zeolite-loaded hydrogel beads can significantly reduce time to coagulation and increase platelet aggregation in vitro. Future research can look into the efficacy of these particles in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocomposite energetics are a relatively new class of materials that combine nanoscale fuels and oxidizers to allow for the rapid release of large amounts of energy. In thermite systems (metal fuel with metal oxide oxidizer), the use of nanomaterials has been illustrated to increase reactivity by multiple orders of magnitude as a result of the higher specific surface area and smaller diffusion length scales. However, the highly dynamic and nanoscale processes intrinsic to these materials, as well as heating rate dependencies, have limited our understanding of the underlying processes that control reaction and propagation. For my dissertation, I have employed a variety of experimental approaches that have allowed me to probe these processes at heating rates representative of free combustion with the goal of understanding the fundamental mechanisms. Dynamic transmission electron microscopy (DTEM) was used to study the in situ morphological change that occurs in nanocomposite thermite materials subjected to rapid (10^11 K/s) heating. Aluminum nanoparticle (Al-NP) aggregates were found to lose their nanostructure through coalescence in as little as 10 ns, which is much faster than any other timescale of combustion. Further study of nanoscale reaction with CuO determined that a condensed phase interfacial reaction could occur within 0.5-5 µs in a manner consistent with bulk reaction, which supports that this mechanism plays a dominant role in the overall reaction process. Ta nanocomposites were also studied to determine if a high melting point (3280 K) affects the loss of nanostructure and rate of reaction. The condensed phase reaction pathway was further explored using reactive multilayers sputter deposited onto thin Pt wires to allow for temperature jump (T-Jump) heating at rates of ~5x10^5 K/s. High speed video and a time of flight mass spectrometry (TOFMS) were used to observe ignition temperature and speciation as a function of bilayer thickness. The ignition process was modeled and a low activation energy for effective diffusivity was determined. T-Jump TOFMS along with constant volume combustion cell studies were also used to determine the effect of gas release in nanoparticle systems by comparing the reaction properties of CuO and Cu2O.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this dissertation was to investigate flexible polymer-nanoparticle composites with unique magnetic and electrical properties. Toward this goal, two distinct projects were carried out. The first project explored the magneto-dielectric properties and morphology of flexible polymer-nanoparticle composites that possess high permeability (µ), high permittivity (ε) and minimal dielectric, and magnetic loss (tan δε, tan δµ). The main materials challenges were the synthesis of magnetic nanoparticle fillers displaying high saturation magnetization (Ms), limited coercivity, and their homogeneous dispersion in a polymeric matrix. Nanostructured magnetic fillers including polycrystalline iron core-shell nanoparticles, and constructively assembled superparamagnetic iron oxide nanoparticles were synthesized, and dispersed uniformly in an elastomer matrix to minimize conductive losses. The resulting composites have demonstrated promising permittivity (22.3), permeability (3), and sustained low dielectric (0.1), magnetic (0.4) loss for frequencies below 2 GHz. This study demonstrated nanocomposites with tunable magnetic resonance frequency, which can be used to develop compact and flexible radio frequency devices with high efficiency. The second project focused on fundamental research regarding methods for the design of highly conductive polymer-nanoparticle composites that can maintain high electrical conductivity under tensile strain exceeding 100%. We investigated a simple solution spraying method to fabricate stretchable conductors based on elastomeric block copolymer fibers and silver nanoparticles. Silver nanoparticles were assembled both in and around block copolymer fibers forming interconnected dual nanoparticle networks, resulting in both in-fiber conductive pathways and additional conductive pathways on the outer surface of the fibers. Stretchable composites with conductivity values reaching 9000 S/cm maintained 56% of their initial conductivity after 500 cycles at 100% strain. The developed manufacturing method in this research could pave the way towards direct deposition of flexible electronic devices on any shaped substrate. The electrical and electromechanical properties of these dual silver nanoparticle network composites make them promising materials for the future construction of stretchable circuitry for displays, solar cells, antennas, and strain and tactility sensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximately 1.6 per 1,000 newborns in the U.S. are born with hearing loss. Congenital hearing loss poses a risk to their speech, language, cognitive, and social-emotional development. Early detection and intervention can improve outcomes. Every state has an Early Hearing Detection and Intervention program (EHDI) to promote and track screening, audiological assessments and linkage to early intervention. However, a large percentage of children are “lost to system (LTS),” meaning that they did not receive recommended care or that it was not reported. This study used data from the 2009-2010 National Survey of Children with Special Health Care Needs and data from the 2011 EHDI Hearing Screening and Follow-Up Survey to examine how 1) family characteristics; 2) EHDI program effectiveness, as determined by LTS percentages; and 3) the family conditions of education and poverty are related to parental report of inadequate care. The sample comprised 684 children between the ages of 0 and 5 years with hearing loss. The results indicated that living in states with less effective EHDI programs was associated with an increased likelihood of not receiving early intervention services (EIS) and of reporting poor family-centered communication. Sibling classification was associated with both receipt of EIS and report of unmet need. Single mothers were less likely to report increased difficulties accessing care. Poor and less educated families, assessed separately, who lived in states with less effective EHDI programs, were more likely to report non-receipt of EIS and less likely to report unmet need as compared to similar families living in states with more effective programs. Poor families living in states with less effective programs were more likely to report less coordinated care than were poor families living in states with more effective programs. This study supports the conclusion that both family characteristics and the effectiveness of state programs affect quality of care outcomes. It appears that less effective state programs affect disadvantaged families’ service receipt report more than that of advantaged families. These findings are important because they may provide insights into the development of targeted efforts to improve the system of care for children with hearing loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Life Cycle Climate Performance (LCCP) is an evaluation method by which heating, ventilation, air conditioning and refrigeration systems can be evaluated for their global warming impact over the course of their complete life cycle. LCCP is more inclusive than previous metrics such as Total Equivalent Warming Impact. It is calculated as the sum of direct and indirect emissions generated over the lifetime of the system “from cradle to grave”. Direct emissions include all effects from the release of refrigerants into the atmosphere during the lifetime of the system. This includes annual leakage and losses during the disposal of the unit. The indirect emissions include emissions from the energy consumption during manufacturing process, lifetime operation, and disposal of the system. This thesis proposes a standardized approach to the use of LCCP and traceable data sources for all aspects of the calculation. An equation is proposed that unifies the efforts of previous researchers. Data sources are recommended for average values for all LCCP inputs. A residential heat pump sample problem is presented illustrating the methodology. The heat pump is evaluated at five U.S. locations in different climate zones. An excel tool was developed for residential heat pumps using the proposed method. The primary factor in the LCCP calculation is the energy consumption of the system. The effects of advanced vapor compression cycles are then investigated for heat pump applications. Advanced cycle options attempt to reduce the energy consumption in various ways. There are three categories of advanced cycle options: subcooling cycles, expansion loss recovery cycles and multi-stage cycles. The cycles selected for research are the suction line heat exchanger cycle, the expander cycle, the ejector cycle, and the vapor injection cycle. The cycles are modeled using Engineering Equation Solver and the results are applied to the LCCP methodology. The expander cycle, ejector cycle and vapor injection cycle are effective in reducing LCCP of a residential heat pump by 5.6%, 8.2% and 10.5%, respectively in Phoenix, AZ. The advanced cycles are evaluated with the use of low GWP refrigerants and are capable of reducing the LCCP of a residential heat by 13.7%, 16.3% and 18.6% using a refrigerant with a GWP of 10. To meet the U.S. Department of Energy’s goal of reducing residential energy use by 40% by 2025 with a proportional reduction in all other categories of residential energy consumption, a reduction in the energy consumption of a residential heat pump of 34.8% with a refrigerant GWP of 10 for Phoenix, AZ is necessary. A combination of advanced cycle, control options and low GWP refrigerants are necessary to meet this goal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A basic requirement of a plasma etching process is fidelity of the patterned organic materials. In photolithography, a He plasma pretreatment (PPT) based on high ultraviolet and vacuum ultraviolet (UV/VUV) exposure was shown to be successful for roughness reduction of 193nm photoresist (PR). Typical multilayer masks consist of many other organic masking materials in addition to 193nm PR. These materials vary significantly in UV/VUV sensitivity and show, therefore, a different response to the He PPT. A delamination of the nanometer-thin, ion-induced dense amorphous carbon (DAC) layer was observed. Extensive He PPT exposure produces volatile species through UV/VUV induced scissioning. These species are trapped underneath the DAC layer in a subsequent plasma etch (PE), causing a loss of adhesion. Next to stabilizing organic materials, the major goals of this work included to establish and evaluate a cyclic fluorocarbon (FC) based approach for atomic layer etching (ALE) of SiO2 and Si; to characterize the mechanisms involved; and to evaluate the impact of processing parameters. Periodic, short precursor injections allow precise deposition of thin FC films. These films limit the amount of available chemical etchant during subsequent low energy, plasma-based Ar+ ion bombardment, resulting in strongly time-dependent etch rates. In situ ellipsometry showcased the self-limited etching. X-ray photoelectron spectroscopy (XPS) confirms FC film deposition and mixing with the substrate. The cyclic ALE approach is also able to precisely etch Si substrates. A reduced time-dependent etching is seen for Si, likely based on a lower physical sputtering energy threshold. A fluorinated, oxidized surface layer is present during ALE of Si and greatly influences the etch behavior. A reaction of the precursor with the fluorinated substrate upon precursor injection was observed and characterized. The cyclic ALE approach is transferred to a manufacturing scale reactor at IBM Research. Ensuring the transferability to industrial device patterning is crucial for the application of ALE. In addition to device patterning, the cyclic ALE process is employed for oxide removal from Si and SiGe surfaces with the goal of minimal substrate damage and surface residues. The ALE process developed for SiO2 and Si etching did not remove native oxide at the level required. Optimizing the process enabled strong O removal from the surface. Subsequent 90% H2/Ar plasma allow for removal of C and F residues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The U.S. Nuclear Regulatory Commission implemented a safety goal policy in response to the 1979 Three Mile Island accident. This policy addresses the question “How safe is safe enough?” by specifying quantitative health objectives (QHOs) for comparison with results from nuclear power plant (NPP) probabilistic risk analyses (PRAs) to determine whether proposed regulatory actions are justified based on potential safety benefit. Lessons learned from recent operating experience—including the 2011 Fukushima accident—indicate that accidents involving multiple units at a shared site can occur with non-negligible frequency. Yet risk contributions from such scenarios are excluded by policy from safety goal evaluations—even for the nearly 60% of U.S. NPP sites that include multiple units. This research develops and applies methods for estimating risk metrics for comparison with safety goal QHOs using models from state-of-the-art consequence analyses to evaluate the effect of including multi-unit accident risk contributions in safety goal evaluations.