7 resultados para network traffic analysis

em DRUM (Digital Repository at the University of Maryland)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Authentication plays an important role in how we interact with computers, mobile devices, the web, etc. The idea of authentication is to uniquely identify a user before granting access to system privileges. For example, in recent years more corporate information and applications have been accessible via the Internet and Intranet. Many employees are working from remote locations and need access to secure corporate files. During this time, it is possible for malicious or unauthorized users to gain access to the system. For this reason, it is logical to have some mechanism in place to detect whether the logged-in user is the same user in control of the user's session. Therefore, highly secure authentication methods must be used. We posit that each of us is unique in our use of computer systems. It is this uniqueness that is leveraged to "continuously authenticate users" while they use web software. To monitor user behavior, n-gram models are used to capture user interactions with web-based software. This statistical language model essentially captures sequences and sub-sequences of user actions, their orderings, and temporal relationships that make them unique by providing a model of how each user typically behaves. Users are then continuously monitored during software operations. Large deviations from "normal behavior" can possibly indicate malicious or unintended behavior. This approach is implemented in a system called Intruder Detector (ID) that models user actions as embodied in web logs generated in response to a user's actions. User identification through web logs is cost-effective and non-intrusive. We perform experiments on a large fielded system with web logs of approximately 4000 users. For these experiments, we use two classification techniques; binary and multi-class classification. We evaluate model-specific differences of user behavior based on coarse-grain (i.e., role) and fine-grain (i.e., individual) analysis. A specific set of metrics are used to provide valuable insight into how each model performs. Intruder Detector achieves accurate results when identifying legitimate users and user types. This tool is also able to detect outliers in role-based user behavior with optimal performance. In addition to web applications, this continuous monitoring technique can be used with other user-based systems such as mobile devices and the analysis of network traffic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this dissertation, I study three problems in market design: the allocation of resources to schools using deferred acceptance algorithms, the demand reduction of employees on centralized labor markets, and the alleviation of traffic congestion. I show how institutional and behavioral considerations specific to each problem can alleviate several practical limitations faced by current solutions. For the case of traffic congestion, I show experimentally that the proposed solution is effective. In Chapter 1, I investigate how school districts could assign resources to schools when it is desirable to provide stable assignments. An assignment is stable if there is no student currently assigned to a school that would prefer to be assigned to a different school that would admit him if it had the resources. Current assignment algorithms assume resources are fixed. I show how simple modifications to these algorithms produce stable allocations of resources and students to schools. In Chapter 2, I show how the negotiation of salaries within centralized labor markets using deferred acceptance algorithms eliminates the incentives of the hiring firms to strategically reduce their demand. It is well-known that it is impossible to eliminate these incentives for the hiring firms in markets without negotiation of salaries. Chapter 3 investigates how to achieve an efficient distribution of traffic congestion on a road network. Traffic congestion is the product of an externality: drivers do not consider the cost they impose on other drivers by entering a road. In theory, Pigouvian prices would solve the problem. In practice, however, these prices face two important limitations: i) the information required to calculate these prices is unavailable to policy makers and ii) these prices would effectively be new taxes that would transfer resources from the public to the government. I show how to construct congestion prices that retrieve the required information from the drivers and do not transfer resources to the government. I circumvent the limitations of Pigouvian prices by assuming that individuals make some mistakes when selecting routes and have a tendency towards truth-telling. Both assumptions are very robust observations in experimental economics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The proliferation of new mobile communication devices, such as smartphones and tablets, has led to an exponential growth in network traffic. The demand for supporting the fast-growing consumer data rates urges the wireless service providers and researchers to seek a new efficient radio access technology, which is the so-called 5G technology, beyond what current 4G LTE can provide. On the other hand, ubiquitous RFID tags, sensors, actuators, mobile phones and etc. cut across many areas of modern-day living, which offers the ability to measure, infer and understand the environmental indicators. The proliferation of these devices creates the term of the Internet of Things (IoT). For the researchers and engineers in the field of wireless communication, the exploration of new effective techniques to support 5G communication and the IoT becomes an urgent task, which not only leads to fruitful research but also enhance the quality of our everyday life. Massive MIMO, which has shown the great potential in improving the achievable rate with a very large number of antennas, has become a popular candidate. However, the requirement of deploying a large number of antennas at the base station may not be feasible in indoor scenarios. Does there exist a good alternative that can achieve similar system performance to massive MIMO for indoor environment? In this dissertation, we address this question by proposing the time-reversal technique as a counterpart of massive MIMO in indoor scenario with the massive multipath effect. It is well known that radio signals will experience many multipaths due to the reflection from various scatters, especially in indoor environments. The traditional TR waveform is able to create a focusing effect at the intended receiver with very low transmitter complexity in a severe multipath channel. TR's focusing effect is in essence a spatial-temporal resonance effect that brings all the multipaths to arrive at a particular location at a specific moment. We show that by using time-reversal signal processing, with a sufficiently large bandwidth, one can harvest the massive multipaths naturally existing in a rich-scattering environment to form a large number of virtual antennas and achieve the desired massive multipath effect with a single antenna. Further, we explore the optimal bandwidth for TR system to achieve maximal spectral efficiency. Through evaluating the spectral efficiency, the optimal bandwidth for TR system is found determined by the system parameters, e.g., the number of users and backoff factor, instead of the waveform types. Moreover, we investigate the tradeoff between complexity and performance through establishing a generalized relationship between the system performance and waveform quantization in a practical communication system. It is shown that a 4-bit quantized waveforms can be used to achieve the similar bit-error-rate compared to the TR system with perfect precision waveforms. Besides 5G technology, Internet of Things (IoT) is another terminology that recently attracts more and more attention from both academia and industry. In the second part of this dissertation, the heterogeneity issue within the IoT is explored. One of the significant heterogeneity considering the massive amount of devices in the IoT is the device heterogeneity, i.e., the heterogeneous bandwidths and associated radio-frequency (RF) components. The traditional middleware techniques result in the fragmentation of the whole network, hampering the objects interoperability and slowing down the development of a unified reference model for the IoT. We propose a novel TR-based heterogeneous system, which can address the bandwidth heterogeneity and maintain the benefit of TR at the same time. The increase of complexity in the proposed system lies in the digital processing at the access point (AP), instead of at the devices' ends, which can be easily handled with more powerful digital signal processor (DSP). Meanwhile, the complexity of the terminal devices stays low and therefore satisfies the low-complexity and scalability requirement of the IoT. Since there is no middleware in the proposed scheme and the additional physical layer complexity concentrates on the AP side, the proposed heterogeneous TR system better satisfies the low-complexity and energy-efficiency requirement for the terminal devices (TDs) compared with the middleware approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Travel demand models are important tools used in the analysis of transportation plans, projects, and policies. The modeling results are useful for transportation planners making transportation decisions and for policy makers developing transportation policies. Defining the level of detail (i.e., the number of roads) of the transport network in consistency with the travel demand model’s zone system is crucial to the accuracy of modeling results. However, travel demand modelers have not had tools to determine how much detail is needed in a transport network for a travel demand model. This dissertation seeks to fill this knowledge gap by (1) providing methodology to define an appropriate level of detail for a transport network in a given travel demand model; (2) implementing this methodology in a travel demand model in the Baltimore area; and (3) identifying how this methodology improves the modeling accuracy. All analyses identify the spatial resolution of the transport network has great impacts on the modeling results. For example, when compared to the observed traffic data, a very detailed network underestimates traffic congestion in the Baltimore area, while a network developed by this dissertation provides a more accurate modeling result of the traffic conditions. Through the evaluation of the impacts a new transportation project has on both networks, the differences in their analysis results point out the importance of having an appropriate level of network detail for making improved planning decisions. The results corroborate a suggested guideline concerning the development of a transport network in consistency with the travel demand model’s zone system. To conclude this dissertation, limitations are identified in data sources and methodology, based on which a plan of future studies is laid out.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

I examine determinants of refugee return after conflicts. I argue that institutional constraints placed on the executive provide a credible commitment that signals to refugees that the conditions required for durable return will be created. This results in increased return flows for refugees. Further, when credible commitments are stronger in the country of origin than in the country of asylum, the level of return increases. Finally, I find that specific commitments made to refugees in the peace agreement do not lead to increased return because they are not credible without institutional constraints. Using data on returnees that has only recently been made available, along with network analysis and an original coding of the provisions in refugee agreements, statistical results are found to support this theory. An examination of cases in Djibouti, Sierra Leone, and Liberia provides additional support for this argument.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Persistent daily congestion has been increasing in recent years, particularly along major corridors during selected periods in the mornings and evenings. On certain segments, these roadways are often at or near capacity. However, a conventional Predefined control strategy did not fit the demands that changed over time, making it necessary to implement the various dynamical lane management strategies discussed in this thesis. Those strategies include hard shoulder running, reversible HOV lanes, dynamic tolls and variable speed limit. A mesoscopic agent-based DTA model is used to simulate different strategies and scenarios. From the analyses, all strategies aim to mitigate congestion in terms of the average speed and average density. The largest improvement can be found in hard shoulder running and reversible HOV lanes while the other two provide more stable traffic. In terms of average speed and travel time, hard shoulder running is the most congested strategy for I-270 to help relieve the traffic pressure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transportation system resilience has been the subject of several recent studies. To assess the resilience of a transportation network, however, it is essential to model its interactions with and reliance on other lifelines. In this work, a bi-level, mixed-integer, stochastic program is presented for quantifying the resilience of a coupled traffic-power network under a host of potential natural or anthropogenic hazard-impact scenarios. A two-layer network representation is employed that includes details of both systems. Interdependencies between the urban traffic and electric power distribution systems are captured through linking variables and logical constraints. The modeling approach was applied on a case study developed on a portion of the signalized traffic-power distribution system in southern Minneapolis. The results of the case study show the importance of explicitly considering interdependencies between critical infrastructures in transportation resilience estimation. The results also provide insights on lifeline performance from an alternative power perspective.