1 resultado para multiple linear regression
em DRUM (Digital Repository at the University of Maryland)
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Aston University Research Archive (29)
- Biblioteca de Teses e Dissertações da USP (11)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (32)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (149)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (3)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (47)
- Brock University, Canada (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CentAUR: Central Archive University of Reading - UK (32)
- Centro Hospitalar do Porto (1)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Collection Of Biostatistics Research Archive (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (20)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (4)
- Digital Commons - Michigan Tech (3)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (16)
- Digital Knowledge Repository of Central Drug Research Institute (4)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (16)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (3)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Glasgow Theses Service (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Bragança (2)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (26)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Publishing Network for Geoscientific & Environmental Data (10)
- QSpace: Queen's University - Canada (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- RDBU - Repositório Digital da Biblioteca da Unisinos (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Aberto da Universidade Aberta de Portugal (2)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (2)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (11)
- Repositório da Produção Científica e Intelectual da Unicamp (30)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (8)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (10)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (3)
- Repositório Institucional da Universidade Federal de Goiás - UFG (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (96)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (11)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo España (2)
- Scielo Saúde Pública - SP (88)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (16)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (3)
- Universidade dos Açores - Portugal (6)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (37)
- Universidade Metodista de São Paulo (7)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (7)
- Université de Lausanne, Switzerland (40)
- Université de Montréal, Canada (22)
- Université Laval Mémoires et thèses électroniques (2)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (36)
- University of Washington (7)
- WestminsterResearch - UK (1)
Resumo:
We present a detailed analysis of the application of a multi-scale Hierarchical Reconstruction method for solving a family of ill-posed linear inverse problems. When the observations on the unknown quantity of interest and the observation operators are known, these inverse problems are concerned with the recovery of the unknown from its observations. Although the observation operators we consider are linear, they are inevitably ill-posed in various ways. We recall in this context the classical Tikhonov regularization method with a stabilizing function which targets the specific ill-posedness from the observation operators and preserves desired features of the unknown. Having studied the mechanism of the Tikhonov regularization, we propose a multi-scale generalization to the Tikhonov regularization method, so-called the Hierarchical Reconstruction (HR) method. First introduction of the HR method can be traced back to the Hierarchical Decomposition method in Image Processing. The HR method successively extracts information from the previous hierarchical residual to the current hierarchical term at a finer hierarchical scale. As the sum of all the hierarchical terms, the hierarchical sum from the HR method provides an reasonable approximate solution to the unknown, when the observation matrix satisfies certain conditions with specific stabilizing functions. When compared to the Tikhonov regularization method on solving the same inverse problems, the HR method is shown to be able to decrease the total number of iterations, reduce the approximation error, and offer self control of the approximation distance between the hierarchical sum and the unknown, thanks to using a ladder of finitely many hierarchical scales. We report numerical experiments supporting our claims on these advantages the HR method has over the Tikhonov regularization method.