5 resultados para multi-theoretic research design
em DRUM (Digital Repository at the University of Maryland)
The tithe: Public research university STEM faculty perspectives on sponsored research indirect costs
Resumo:
This study sought to understand the phenomenon of faculty involvement in indirect cost under-recovery. The focus of the study was on public research university STEM (science, technology, engineering and mathematics) faculty, and their perspectives on, and behavior towards, a higher education fiscal policy. The explanatory scheme was derived from anthropological theory, and incorporated organizational culture, faculty socialization, and political bargaining models in the conceptual framework. This study drew on two key assumptions. The first assumption was that faculty understanding of, and behavior toward, indirect cost recovery represents values, beliefs, and choices drawn from the distinct professional socialization and distinct culture of faculty. The second assumption was that when faculty and institutional administrators are in conflict over indirect cost recovery, the resultant formal administrative decision comes about through political bargaining over critical resources. The research design was a single site, qualitative case study with a focus on learning the meaning of the phenomenon as understood by the informants. In this study the informants were tenured and tenure track research university faculty in the STEM fields who were highly successful at obtaining Federal sponsored research funds, with individual sponsored research portfolios of at least one million dollars. The data consisted of 11 informant interviews, bolstered by documentary evidence. The findings indicated that faculty socialization and organizational culture were the most dominant themes, while political bargaining emerged as significantly less prominent. Public research university STEM faculty are most concerned about the survival of their research programs and the discovery facilitated by their research programs. They resort to conjecture when confronted by the issue of indirect cost recovery. The findings direct institutional administrators to consider less emphasis on compliance and hierarchy when working with expert professionals such as science faculty. Instead a more effective focus might be on communication and clarity in budget processes and organizational decision-making, and a concentration on critical administrative support that can relieve faculty administrative burdens. For higher education researchers, the findings suggest that we need to create more sophisticated models to help us understand organizations dependent on expert professionals.
Resumo:
This dissertation presents work done in the design, modeling, and fabrication of magnetically actuated microrobot legs. Novel fabrication processes for manufacturing multi-material compliant mechanisms have been used to fabricate effective legged robots at both the meso and micro scales, where the meso scale refers to the transition between macro and micro scales. This work discusses the development of a novel mesoscale manufacturing process, Laser Cut Elastomer Refill (LaCER), for prototyping millimeter-scale multi-material compliant mechanisms with elastomer hinges. Additionally discussed is an extension of previous work on the development of a microscale manufacturing process for fabricating micrometer-sale multi-material compliant mechanisms with elastomer hinges, with the added contribution of a method for incorporating magnetic materials for mechanism actuation using externally applied fields. As both of the fabrication processes outlined make significant use of highly compliant elastomer hinges, a fast, accurate modeling method for these hinges was desired for mechanism characterization and design. An analytical model was developed for this purpose, making use of the pseudo rigid-body (PRB) model and extending its utility to hinges with significant stretch component, such as those fabricated from elastomer materials. This model includes 3 springs with stiffnesses relating to material stiffness and hinge geometry, with additional correction factors for aspects particular to common multi-material hinge geometry. This model has been verified against a finite element analysis model (FEA), which in turn was matched to experimental data on mesoscale hinges manufactured using LaCER. These modeling methods have additionally been verified against experimental data from microscale hinges manufactured using the Si/elastomer/magnetics MEMS process. The development of several mechanisms is also discussed: including a mesoscale LaCER-fabricated hexapedal millirobot capable of walking at 2.4 body lengths per second; prototyped mesoscale LaCER-fabricated underactuated legs with asymmetrical features for improved performance; 1 centimeter cubed LaCER-fabricated magnetically-actuated hexapods which use the best-performing underactuated leg design to locomote at up to 10.6 body lengths per second; five microfabricated magnetically actuated single-hinge mechanisms; a 14-hinge, 11-link microfabricated gripper mechanism; a microfabricated robot leg mechansim demonstrated clearing a step height of 100 micrometers; and a 4 mm x 4 mm x 5 mm, 25 mg microfabricated magnetically-actuated hexapod, demonstrated walking at up to 2.25 body lengths per second.
Resumo:
This research-design thesis explores the implementation of Regenerative Stormwater Conveyance (RSC) as a retrofit of an existing impervious drainage system in a small catchment in the degraded Jones Falls watershed in Baltimore City. An introduction to RSC is provided, placing its development within a theoretical context of novel ecosystems, biomimicry and Nassauer and Opdam’s (2008) model of landscape innovation. The case site is in Baltimore’s Hampden neighborhood on City-owned land adjacent to rowhomes, open space and an access point to a popular wooded trail along a local stream. The design proposal employs RSC to retrofit an ill-performing stormwater system, simultaneously providing a range of ecological, social and economic services; water quantity, water quality and economic performance of the proposed RSC are quantified. While the proposed design is site-specific the model is adaptable for retrofitting other small-scale impervious drainage systems, providing a strategic tool in addressing Baltimore City’s stormwater challenges.
Resumo:
Gemstone Team Juiced
Resumo:
In the summers of 1998 and 1999, the Archaeology in Annapolis project carried out archaeological investigation at the eighteenth century Dr. Upton Scott House site (18AP18)located at 4 Shipwright Street in the historic district of Annapolis, Anne Arundel County, Maryland. The Upton Scott House is significant as one of only a few Georgian houses with remnants of its original plantation-inspired landscape still visible (Graham 1998:147). Investigation was completed in agreement with the owners of the historic property, Mr. and Mrs. Paul Christian, who were interested in determining the condition and arrangement of Dr. Upton Scott’s well-documented pleasure gardens. Betty Cosans’ 1972 Archaeological Feasibility Report, the first real archaeological study of the Upton Scott House site, guided the research design and recovery efforts. Cosans determined that testing and survey in the back and side yards of the Scott property would yield important information on the use and history of the property, including that of Scott’s famous gardens. Excavation units and trenches were placed within three separate areas of backyard activity on the site which included Area One: extant brick stables in the southwest of the property; Area Two: the brick foundations of a small outbuilding located in the northwest area of the site; and Area Three: the area of Scott’s formal gardens. The research design included an interest in recovering evidence of African-American spiritual practice and domestic life at the site. Also of significant importance was an analysis of Scott’s garden beds, concerning the order and layout. Also sought was an understanding of the change in perception and use of the backyard by the various owners of the property.