2 resultados para movie camera
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Though the trend rarely receives attention, since the 1970s many American filmmakers have been taking sound and music tropes from children’s films, television shows, and other forms of media and incorporating those sounds into films intended for adult audiences. Initially, these references might seem like regressive attempts at targeting some nostalgic desire to relive childhood. However, this dissertation asserts that these children’s sounds are instead designed to reconnect audience members with the multi-faceted fantasies and coping mechanisms that once, through children’s media, helped these audience members manage life’s anxieties. Because sound is the sense that Western audiences most associate with emotion and memory, it offers audiences immediate connection with these barely conscious longings. The first chapter turns to children’s media itself and analyzes Disney’s 1950s forays into television. The chapter argues that by selectively repurposing the gentlest sonic devices from the studio’s films, television shows like Disneyland created the studio’s signature sentimental “Disney sound.” As a result, a generation of baby boomers like Steven Spielberg comes of age and longs to recreate that comforting sound world. The second chapter thus focuses on Spielberg, who incorporates Disney music in films like Close Encounters of the Third Kind (1977). Rather than recreate Disney’s sound world, Spielberg uses this music as a springboard into a new realm I refer to as “sublime refuge” - an acoustic haven that combines overpowering sublimity and soothing comfort into one fantastical experience. The second half of the dissertation pivots into more experimental children’s cartoons like Gerald McBoing-Boing (1951) - cartoons that embrace audio-visual dissonance in ways that soothe even as they create tension through a phenomenon I call “comfortable discord.” In the final chapter, director Wes Anderson reveals that these sonic tensions have just as much appeal to adults. In films like The Royal Tenenbaums (2001), Anderson demonstrates that comfortable discord can simultaneously provide a balm for anxiety and create an open-ended space that makes empathetic connections between characters possible. The dissertation closes with a call to rethink nostalgia, not as a romanticization of the past, but rather as a reconnection with forgotten affective channels.
Resumo:
Recent advances in mobile phone cameras have poised them to take over compact hand-held cameras as the consumer’s preferred camera option. Along with advances in the number of pixels, motion blur removal, face-tracking, and noise reduction algorithms have significant roles in the internal processing of the devices. An undesired effect of severe noise reduction is the loss of texture (i.e. low-contrast fine details) of the original scene. Current established methods for resolution measurement fail to accurately portray the texture loss incurred in a camera system. The development of an accurate objective method to identify the texture preservation or texture reproduction capability of a camera device is important in this regard. The ‘Dead Leaves’ target has been used extensively as a method to measure the modulation transfer function (MTF) of cameras that employ highly non-linear noise-reduction methods. This stochastic model consists of a series of overlapping circles with radii r distributed as r−3, and having uniformly distributed gray level, which gives an accurate model of occlusion in a natural setting and hence mimics a natural scene. This target can be used to model the texture transfer through a camera system when a natural scene is captured. In the first part of our study we identify various factors that affect the MTF measured using the ‘Dead Leaves’ chart. These include variations in illumination, distance, exposure time and ISO sensitivity among others. We discuss the main differences of this method with the existing resolution measurement techniques and identify the advantages. In the second part of this study, we propose an improvement to the current texture MTF measurement algorithm. High frequency residual noise in the processed image contains the same frequency content as fine texture detail, and is sometimes reported as such, thereby leading to inaccurate results. A wavelet thresholding based denoising technique is utilized for modeling the noise present in the final captured image. This updated noise model is then used for calculating an accurate texture MTF. We present comparative results for both algorithms under various image capture conditions.