2 resultados para models for management assessment

em DRUM (Digital Repository at the University of Maryland)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract: New product design challenges, related to customer needs, product usage and environments, face companies when they expand their product offerings to new markets; Some of the main challenges are: the lack of quantifiable information, product experience and field data. Designing reliable products under such challenges requires flexible reliability assessment processes that can capture the variables and parameters affecting the product overall reliability and allow different design scenarios to be assessed. These challenges also suggest a mechanistic (Physics of Failure-PoF) reliability approach would be a suitable framework to be used for reliability assessment. Mechanistic Reliability recognizes the primary factors affecting design reliability. This research views the designed entity as a “system of components required to deliver specific operations”; it addresses the above mentioned challenges by; Firstly: developing a design synthesis that allows a descriptive operations/ system components relationships to be realized; Secondly: developing component’s mathematical damage models that evaluate components Time to Failure (TTF) distributions given: 1) the descriptive design model, 2) customer usage knowledge and 3) design material properties; Lastly: developing a procedure that integrates components’ damage models to assess the mechanical system’s reliability over time. Analytical and numerical simulation models were developed to capture the relationships between operations and components, the mathematical damage models and the assessment of system’s reliability. The process was able to affect the design form during the conceptual design phase by providing stress goals to meet component’s reliability target. The process was able to numerically assess the reliability of a system based on component’s mechanistic TTF distributions, besides affecting the design of the component during the design embodiment phase. The process was used to assess the reliability of an internal combustion engine manifold during design phase; results were compared to reliability field data and found to produce conservative reliability results. The research focused on mechanical systems, affected by independent mechanical failure mechanisms that are influenced by the design process. Assembly and manufacturing stresses and defects’ influences are not a focus of this research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The service of a critical infrastructure, such as a municipal wastewater treatment plant (MWWTP), is taken for granted until a flood or another low frequency, high consequence crisis brings its fragility to attention. The unique aspects of the MWWTP call for a method to quantify the flood stage-duration-frequency relationship. By developing a bivariate joint distribution model of flood stage and duration, this study adds a second dimension, time, into flood risk studies. A new parameter, inter-event time, is developed to further illustrate the effect of event separation on the frequency assessment. The method is tested on riverine, estuary and tidal sites in the Mid-Atlantic region. Equipment damage functions are characterized by linear and step damage models. The Expected Annual Damage (EAD) of the underground equipment is further estimated by the parametric joint distribution model, which is a function of both flood stage and duration, demonstrating the application of the bivariate model in risk assessment. Flood likelihood may alter due to climate change. A sensitivity analysis method is developed to assess future flood risk by estimating flood frequency under conditions of higher sea level and stream flow response to increased precipitation intensity. Scenarios based on steady and unsteady flow analysis are generated for current climate, future climate within this century, and future climate beyond this century, consistent with the WWTP planning horizons. The spatial extent of flood risk is visualized by inundation mapping and GIS-Assisted Risk Register (GARR). This research will help the stakeholders of the critical infrastructure be aware of the flood risk, vulnerability, and the inherent uncertainty.