3 resultados para mobile interface design

em DRUM (Digital Repository at the University of Maryland)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Software updates are critical to the security of software systems and devices. Yet users often do not install them in a timely manner, leaving their devices open to security exploits. This research explored a re-design of automatic software updates on desktop and mobile devices to improve the uptake of updates through three studies. First using interviews, we studied users’ updating patterns and behaviors on desktop machines in a formative study. Second, we distilled these findings into the design of a low-fi prototype for desktops, and evaluated its efficacy for automating updates by means of a think-aloud study. Third, we investigated individual differences in update automation on Android devices using a large scale survey, and interviews. In this thesis, I present the findings of all three studies and provide evidence for how automatic updates can be better appropriated to fit users on both desktops and mobile devices. Additionally, I provide user interface design suggestions for software updates and outline recommendations for future work to improve the user experience of software updates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bikeshares promote healthy lifestyles and sustainability among commuters, casual riders, and tourists. However, the central pillar of modern systems, the bike station, cannot be easily integrated into a compact college campus. Fixed stations lack the flexibility to meet the needs of college students who make quick, short-distance trips. Additionally, the necessary cost of implementing and maintaining each station prohibits increasing the number of stations for user convenience. Therefore, the team developed a stationless bikeshare based on a smartlock permanently attached to bicycles in the system. The smartlock system design incorporates several innovative approaches to provide usability, security, and reliability that overcome the limitations of a station centered design. A focus group discussion allowed the team to receive feedback on the early lock, system, and website designs, identify improvements and craft a pleasant user experience. The team designed a unique, two-step lock system that is intuitive to operate while mitigating user error. To ensure security, user access is limited through near field ii communications (NFC) technology connected to a mechatronic release system. The said system relied on a NFC module and a servo working through an Arduino microcontroller coded in the Arduino IDE. To track rentals and maintain the system, each bike is fitted with an XBee module to communicate with a scalable ZigBee mesh network. The network allows for bidirectional, real-time communication with a Meteor.js web application, which enables user and administrator functions through an intuitive user interface available on mobile and desktop. The development of an independent smartlock to replace bike stations is essential to meet the needs of the modern college student. With the goal of creating a bikeshare that better serves college students, Team BIKES has laid the framework for a system that is affordable, easily adaptable, and implementable on any university expressing an interest in bringing a bikeshare to its campus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation presents a case study of collaborative research through design with Floracaching, a gamified mobile application for citizen science biodiversity data collection. One contribution of this study is the articulation of collaborative research through design (CRtD), an approach that blends cooperative design approaches with the research through design methodology (RtD). Collaborative research through design is thus defined as an iterative process of cooperative design, where the collaborative vision of an ideal state is embedded in a design. Applying collaborative research through design with Floracaching illustrates how a number of cooperative techniques—especially contextual inquiry, prototyping, and focus groups—may be applied in a research through design setting. Four suggestions for collaborative research through design (recruit from a range of relevant backgrounds; take flexibility as a goal; enable independence and agency; and, choose techniques that support agreement or consensus) are offered to help others who wish to experiment with this new approach. Applying collaborative research through design to Floracaching yielded a new prototype of the application, accompanied by design annotations in the form of framing constructs for designing to support mobile, place-based citizen science activities. The prototype and framing constructs, which may inform other designers of similar citizen science technologies, are a second contribution of this research.