5 resultados para metadata repository
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Presentation from the MARAC conference in Roanoke, VA on October 7–10, 2015. S17 - “Un session” II: A MARAC Mini Unconference
Resumo:
In 2005, the University of Maryland acquired over 70 digital videos spanning 35 years of Jim Henson’s groundbreaking work in television and film. To support in-house discovery and use, the collection was cataloged in detail using AACR2 and MARC21, and a web-based finding aid was also created. In the past year, I created an "r-ball" (a linked data set described using RDA) of these same resources. The presentation will compare and contrast these three ways of accessing the Jim Henson Works collection, with insights gleaned from providing resource discovery using RIMMF (RDA in Many Metadata Formats).
Resumo:
Presented at the 2016 Library Research and Innovative Practice Forum, this poster provides an overview of a successful partnership between the University of Maryland Archives and UMD's Gymkana Troupe to publicize Gymkana's 70th anniversary and to digitize the troupe's holdings in the Archives. Gymkana is an exhibition gymnastics troupe founded on campus in 1946 which runs a variety of educational and healthy-living outreach programs. Various stages of the project are highlighted, including an exhibit in McKeldin Library, a LaunchUMD fundraising campaign, and the troupe's participation in metadata creation for digital objects. By maintaining an open and flexible dialogue throughout the project planning and execution, both the library and the troupe members ultimately benefited from this collaboration.
Resumo:
We propose three research problems to explore the relations between trust and security in the setting of distributed computation. In the first problem, we study trust-based adversary detection in distributed consensus computation. The adversaries we consider behave arbitrarily disobeying the consensus protocol. We propose a trust-based consensus algorithm with local and global trust evaluations. The algorithm can be abstracted using a two-layer structure with the top layer running a trust-based consensus algorithm and the bottom layer as a subroutine executing a global trust update scheme. We utilize a set of pre-trusted nodes, headers, to propagate local trust opinions throughout the network. This two-layer framework is flexible in that it can be easily extensible to contain more complicated decision rules, and global trust schemes. The first problem assumes that normal nodes are homogeneous, i.e. it is guaranteed that a normal node always behaves as it is programmed. In the second and third problems however, we assume that nodes are heterogeneous, i.e, given a task, the probability that a node generates a correct answer varies from node to node. The adversaries considered in these two problems are workers from the open crowd who are either investing little efforts in the tasks assigned to them or intentionally give wrong answers to questions. In the second part of the thesis, we consider a typical crowdsourcing task that aggregates input from multiple workers as a problem in information fusion. To cope with the issue of noisy and sometimes malicious input from workers, trust is used to model workers' expertise. In a multi-domain knowledge learning task, however, using scalar-valued trust to model a worker's performance is not sufficient to reflect the worker's trustworthiness in each of the domains. To address this issue, we propose a probabilistic model to jointly infer multi-dimensional trust of workers, multi-domain properties of questions, and true labels of questions. Our model is very flexible and extensible to incorporate metadata associated with questions. To show that, we further propose two extended models, one of which handles input tasks with real-valued features and the other handles tasks with text features by incorporating topic models. Our models can effectively recover trust vectors of workers, which can be very useful in task assignment adaptive to workers' trust in the future. These results can be applied for fusion of information from multiple data sources like sensors, human input, machine learning results, or a hybrid of them. In the second subproblem, we address crowdsourcing with adversaries under logical constraints. We observe that questions are often not independent in real life applications. Instead, there are logical relations between them. Similarly, workers that provide answers are not independent of each other either. Answers given by workers with similar attributes tend to be correlated. Therefore, we propose a novel unified graphical model consisting of two layers. The top layer encodes domain knowledge which allows users to express logical relations using first-order logic rules and the bottom layer encodes a traditional crowdsourcing graphical model. Our model can be seen as a generalized probabilistic soft logic framework that encodes both logical relations and probabilistic dependencies. To solve the collective inference problem efficiently, we have devised a scalable joint inference algorithm based on the alternating direction method of multipliers. The third part of the thesis considers the problem of optimal assignment under budget constraints when workers are unreliable and sometimes malicious. In a real crowdsourcing market, each answer obtained from a worker incurs cost. The cost is associated with both the level of trustworthiness of workers and the difficulty of tasks. Typically, access to expert-level (more trustworthy) workers is more expensive than to average crowd and completion of a challenging task is more costly than a click-away question. In this problem, we address the problem of optimal assignment of heterogeneous tasks to workers of varying trust levels with budget constraints. Specifically, we design a trust-aware task allocation algorithm that takes as inputs the estimated trust of workers and pre-set budget, and outputs the optimal assignment of tasks to workers. We derive the bound of total error probability that relates to budget, trustworthiness of crowds, and costs of obtaining labels from crowds naturally. Higher budget, more trustworthy crowds, and less costly jobs result in a lower theoretical bound. Our allocation scheme does not depend on the specific design of the trust evaluation component. Therefore, it can be combined with generic trust evaluation algorithms.
Resumo:
As usage metrics continue to attain an increasingly central role in library system assessment and analysis, librarians tasked with system selection, implementation, and support are driven to identify metric approaches that simultaneously require less technical complexity and greater levels of data granularity. Such approaches allow systems librarians to present evidence-based claims of platform usage behaviors while reducing the resources necessary to collect such information, thereby representing a novel approach to real-time user analysis as well as dual benefit in active and preventative cost reduction. As part of the DSpace implementation for the MD SOAR initiative, the Consortial Library Application Support (CLAS) division has begun test implementation of the Google Tag Manager analytic system in an attempt to collect custom analytical dimensions to track author- and university-specific download behaviors. Building on the work of Conrad , CLAS seeks to demonstrate that the GTM approach to custom analytics provides both granular metadata-based usage statistics in an approach that will prove extensible for additional statistical gathering in the future. This poster will discuss the methodology used to develop these custom tag approaches, the benefits of using the GTM model, and the risks and benefits associated with further implementation.