5 resultados para mesne profits
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Peer-to-peer information sharing has fundamentally changed customer decision-making process. Recent developments in information technologies have enabled digital sharing platforms to influence various granular aspects of the information sharing process. Despite the growing importance of digital information sharing, little research has examined the optimal design choices for a platform seeking to maximize returns from information sharing. My dissertation seeks to fill this gap. Specifically, I study novel interventions that can be implemented by the platform at different stages of the information sharing. In collaboration with a leading for-profit platform and a non-profit platform, I conduct three large-scale field experiments to causally identify the impact of these interventions on customers’ sharing behaviors as well as the sharing outcomes. The first essay examines whether and how a firm can enhance social contagion by simply varying the message shared by customers with their friends. Using a large randomized field experiment, I find that i) adding only information about the sender’s purchase status increases the likelihood of recipients’ purchase; ii) adding only information about referral reward increases recipients’ follow-up referrals; and iii) adding information about both the sender’s purchase as well as the referral rewards increases neither the likelihood of purchase nor follow-up referrals. I then discuss the underlying mechanisms. The second essay studies whether and how a firm can design unconditional incentive to engage customers who already reveal willingness to share. I conduct a field experiment to examine the impact of incentive design on sender’s purchase as well as further referral behavior. I find evidence that incentive structure has a significant, but interestingly opposing, impact on both outcomes. The results also provide insights about senders’ motives in sharing. The third essay examines whether and how a non-profit platform can use mobile messaging to leverage recipients’ social ties to encourage blood donation. I design a large field experiment to causally identify the impact of different types of information and incentives on donor’s self-donation and group donation behavior. My results show that non-profits can stimulate group effect and increase blood donation, but only with group reward. Such group reward works by motivating a different donor population. In summary, the findings from the three studies will offer valuable insights for platforms and social enterprises on how to engineer digital platforms to create social contagion. The rich data from randomized experiments and complementary sources (archive and survey) also allows me to test the underlying mechanism at work. In this way, my dissertation provides both managerial implication and theoretical contribution to the phenomenon of peer-to-peer information sharing.
Resumo:
I investigate the effects of information frictions in price setting decisions. I show that firms' output prices and wages are less sensitive to aggregate economic conditions when firms and workers cannot perfectly understand (or know) the aggregate state of the economy. Prices and wages respond with a lag to aggregate innovations because agents learn slowly about those changes, and this delayed adjustment in prices makes output and unemployment more sensitive to aggregate shocks. In the first chapter of this dissertation, I show that workers' noisy information about the state of the economy help us to explain why real wages are sluggish. In the context of a search and matching model, wages do not immediately respond to a positive aggregate shock because workers do not (yet) have enough information to demand higher wages. This increases firms' incentives to post more vacancies, and it makes unemployment volatile and sensitive to aggregate shocks. This mechanism is robust to two major criticisms of existing theories of sluggish wages and volatile unemployment: the flexibility of wages for new hires and the cyclicality of the opportunity cost of employment. Calibrated to U.S. data, the model explains 60% of the overall unemployment volatility. Consistent with empirical evidence, the response of unemployment to TFP shocks predicted by my model is large, hump-shaped, and peaks one year after the TFP shock, while the response of the aggregate wage is weak and delayed, peaking after two years. In the second chapter of this dissertation, I study the role of information frictions and inventories in firms' price setting decisions in the context of a monetary model. In this model, intermediate goods firms accumulate output inventories, observe aggregate variables with one period lag, and observe their nominal input prices and demand at all times. Firms face idiosyncratic shocks and cannot perfectly infer the state of nature. After a contractionary nominal shock, nominal input prices go down, and firms accumulate inventories because they perceive some positive probability that the nominal price decline is due to a good productivity shock. This prevents firms' prices from decreasing and makes current profits, households' income, and aggregate demand go down. According to my model simulations, a 1% decrease in the money growth rate causes output to decline 0.17% in the first quarter and 0.38% in the second followed by a slow recovery to the steady state. Contractionary nominal shocks also have significant effects on total investment, which remains 1% below the steady state for the first 6 quarters.
Resumo:
This dissertation studies technological change in the context of energy and environmental economics. Technology plays a key role in reducing greenhouse gas emissions from the transportation sector. Chapter 1 estimates a structural model of the car industry that allows for endogenous product characteristics to investigate how gasoline taxes, R&D subsidies and competition affect fuel efficiency and vehicle prices in the medium-run, both through car-makers' decisions to adopt technologies and through their investments in knowledge capital. I use technology adoption and automotive patents data for 1986-2006 to estimate this model. I show that 92% of fuel efficiency improvements between 1986 and 2006 were driven by technology adoption, while the role of knowledge capital is largely to reduce the marginal production costs of fuel-efficient cars. A counterfactual predicts that an additional $1/gallon gasoline tax in 2006 would have increased the technology adoption rate, and raised average fuel efficiency by 0.47 miles/gallon, twice the annual fuel efficiency improvement in 2003-2006. An R&D subsidy that would reduce the marginal cost of knowledge capital by 25% in 2006 would have raised investment in knowledge capital. This subsidy would have raised fuel efficiency only by 0.06 miles/gallon in 2006, but would have increased variable profits by $2.3 billion over all firms that year. Passenger vehicle fuel economy standards in the United States will require substantial improvements in new vehicle fuel economy over the next decade. Economic theory suggests that vehicle manufacturers adopt greater fuel-saving technologies for vehicles with larger market size. Chapter 2 documents a strong connection between market size, measured by sales, and technology adoption. Using variation consumer demographics and purchasing pattern to account for the endogeneity of market size, we find that a 10 percent increase in market size raises vehicle fuel efficiency by 0.3 percent, as compared to a mean improvement of 1.4 percent per year over 1997-2013. Historically, fuel price and demographic-driven market size changes have had large effects on technology adoption. Furthermore, fuel taxes would induce firms to adopt fuel-saving technologies on their most efficient cars, thereby polarizing the fuel efficiency distribution of the new vehicle fleet.
Resumo:
I study how a larger party within a supply chain could use its superior knowledge about its partner, who is considered to be financially constrained, to help its partner gain access to cheap finance. In particular, I consider two scenarios: (i) Retailer intermediation in supplier finance and (ii) The Effectiveness of Supplier Buy Back Finance. In the fist chapter, I study how a large buyer could help small suppliers obtain financing for their operations. Especially in developing economies, traditional financing methods can be very costly or unavailable to such suppliers. In order to reduce channel costs, in recent years large buyers started to implement their own financing methods that intermediate between suppliers and financing institutions. In this paper, I analyze the role and efficiency of buyer intermediation in supplier financing. Building a game-theoretical model, I show that buyer intermediated financing can significantly improve supply chain performance. Using data from a large Chinese online retailer and through structural regression estimation based on the theoretical analysis, I demonstrate that buyer intermediation induces lower interest rates and wholesale prices, increases order quantities, and boosts supplier borrowing. The analysis also shows that the retailer systematically overestimates the consumer demand. Based on counterfactual analysis, I predict that the implementation of buyer intermediated financing for the online retailer in 2013 improved channel profits by 18.3%, yielding more than $68M projected savings. In the second chapter, I study a novel buy-back financing scheme employed by large manufacturers in some emerging markets. A large manufacturer can secure financing for its budget-constrained downstream partners by assuming a part of the risk for their inventory by committing to buy back some unsold units. Buy back commitment could help a small downstream party secure a bank loan and further induce a higher order quantity through better allocation of risk in the supply chain. However, such a commitment may undermine the supply chain performance as it imposes extra costs on the supplier incurred by the return of large or costly-to-handle items. I first theoretically analyze the buy-back financing contract employed by a leading Chinese automative manufacturer and some variants of this contracting scheme. In order to measure the effectiveness of buy-back financing contracts, I utilize contract and sales data from the company and structurally estimate the theoretical model. Through counterfactual analysis, I study the efficiency of various buy-back financing schemes and compare them to traditional financing methods. I find that buy-back contract agreements can improve channel efficiency significantly compared to simple contracts with no buy-back, whether the downstream retailer can secure financing on its own or not.
Resumo:
Increasing plant diversity in conventionally monoculture agrosystems has been promoted as a method to enhance beneficial arthropod density and efficacy, suppress herbivory and provide a range of ecosystem services. I investigated the pest suppressive potential and economic impact of plant diversification in organic field corn. The experiment consisted of two treatments, corn grown in monoculture (C) and bordered by strips of partridge pea (PP). Pest and natural enemy populations, corn damage, yield, and profits were compared among treatments. Natural enemy and herbivore arthropod populations were affected by treatment and distance from plot border. Corn damage due to pests was also affected by treatment and location, but did not significantly affect yield. Yield in monoculture plots was generally greater than in PP but did not result in greater profit. Pest and natural enemy arthropod abundances were elevated in partridge pea treatment borders, but these populations did not consistently diffuse into plot interiors. The potential causes and implications of findings are discussed.