3 resultados para mass-gatherings model
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Intersex in largemouth bass (Micropterus salmoides) has been correlated with regional anthropogenic activity, but has not been causally linked to environmental factors. Four groups of hatchery-reared largemouth bass (LMB) and fathead minnows (FHM) of varying ages and sex were exposed to aqueous poultry litter mixtures, 17β- estradiol (E2), and controls. Water samples were analyzed for estrogens through liquid chromatography tandem mass spectrometry and estrogenicity through the bioluminescent yeast estrogen screen assay. Fish plasma was analyzed for the egg yolk protein vitellogenin (Vtg) using enzyme–linked immunosorbent assay and gonad tissue was examined histologically for enumeration of testicular oocytes (TO). Water chemistry revealed typical E2 conversion to Estrone with subsequent decay over the exposure periods. A modest prevalence of TO (9.4%) was detected with no apparent treatment effect. While significant Vtg induction was found in E2 exposed FHM, minimal Vtg induction was found in male LMB. Despite field findings of intersex in male LMB, this species may be poorly suited for laboratory investigations into endocrine disruption.
Resumo:
This thesis describes the development and correlation of a thermal model that forms the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA’s Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented are presented. The thermal model was correlated to within +/- 3 Celsius of the thermal vacuum test data, and was determined sufficient to make future propellant predictions on MMS. The model was also found to be relatively sensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed to improve temperature predictions in the upper hemisphere of the propellant tank where predictions were found to be 2-2.5 Celsius lower than the test data. A road map for applying the model to predict propellant loads on the actual MMS spacecraft in 2017-2018 is also presented.
Resumo:
Fatigue damage in the connections of single mast arm signal support structures is one of the primary safety concerns because collapse could result from fatigue induced cracking. This type of cantilever signal support structures typically has very light damping and excessively large wind-induced vibration have been observed. Major changes related to fatigue design were made in the 2001 AASHTO LRFD Specification for Structural Supports for Highway Signs, Luminaries, and Traffic Signals and supplemental damping devices have been shown to be promising in reducing the vibration response and thus fatigue load demand on mast arm signal support structures. The primary objective of this study is to investigate the effectiveness and optimal use of one type of damping devices termed tuned mass damper (TMD) in vibration response mitigation. Three prototype single mast arm signal support structures with 50-ft, 60-ft, and 70-ft respectively are selected for this numerical simulation study. In order to validate the finite element models for subsequent simulation study, analytical modeling of static deflection response of mast arm of the signal support structures was performed and found to be close to the numerical simulation results from beam element based finite element model. A 3-DOF dynamic model was then built using analytically derived stiffness matrix for modal analysis and time history analysis. The free vibration response and forced (harmonic) vibration response of the mast arm structures from the finite element model are observed to be in good agreement with the finite element analysis results. Furthermore, experimental test result from recent free vibration test of a full-scale 50-ft mast arm specimen in the lab is used to verify the prototype structure’s fundamental frequency and viscous damping ratio. After validating the finite element models, a series of parametric study were conducted to examine the trend and determine optimal use of tuned mass damper on the prototype single mast arm signal support structures by varying the following parameters: mass, frequency, viscous damping ratio, and location of TMD. The numerical simulation study results reveal that two parameters that influence most the vibration mitigation effectiveness of TMD on the single mast arm signal pole structures are the TMD frequency and its viscous damping ratio.