3 resultados para judge executor

em DRUM (Digital Repository at the University of Maryland)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Symbolic execution is a powerful program analysis technique, but it is very challenging to apply to programs built using event-driven frameworks, such as Android. The main reason is that the framework code itself is too complex to symbolically execute. The standard solution is to manually create a framework model that is simpler and more amenable to symbolic execution. However, developing and maintaining such a model by hand is difficult and error-prone. We claim that we can leverage program synthesis to introduce a high-degree of automation to the process of framework modeling. To support this thesis, we present three pieces of work. First, we introduced SymDroid, a symbolic executor for Android. While Android apps are written in Java, they are compiled to Dalvik bytecode format. Instead of analyzing an app’s Java source, which may not be available, or decompiling from Dalvik back to Java, which requires significant engineering effort and introduces yet another source of potential bugs in an analysis, SymDroid works directly on Dalvik bytecode. Second, we introduced Pasket, a new system that takes a first step toward automatically generating Java framework models to support symbolic execution. Pasket takes as input the framework API and tutorial programs that exercise the framework. From these artifacts and Pasket's internal knowledge of design patterns, Pasket synthesizes an executable framework model by instantiating design patterns, such that the behavior of a synthesized model on the tutorial programs matches that of the original framework. Lastly, in order to scale program synthesis to framework models, we devised adaptive concretization, a novel program synthesis algorithm that combines the best of the two major synthesis strategies: symbolic search, i.e., using SAT or SMT solvers, and explicit search, e.g., stochastic enumeration of possible solutions. Adaptive concretization parallelizes multiple sub-synthesis problems by partially concretizing highly influential unknowns in the original synthesis problem. Thanks to adaptive concretization, Pasket can generate a large-scale model, e.g., thousands lines of code. In addition, we have used an Android model synthesized by Pasket and found that the model is sufficient to allow SymDroid to execute a range of apps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In economics of information theory, credence products are those whose quality is difficult or impossible for consumers to assess, even after they have consumed the product (Darby & Karni, 1973). This dissertation is focused on the content, consumer perception, and power of online reviews for credence services. Economics of information theory has long assumed, without empirical confirmation, that consumers will discount the credibility of claims about credence quality attributes. The same theories predict that because credence services are by definition obscure to the consumer, reviews of credence services are incapable of signaling quality. Our research aims to question these assumptions. In the first essay we examine how the content and structure of online reviews of credence services systematically differ from the content and structure of reviews of experience services and how consumers judge these differences. We have found that online reviews of credence services have either less important or less credible content than reviews of experience services and that consumers do discount the credibility of credence claims. However, while consumers rationally discount the credibility of simple credence claims in a review, more complex argument structure and the inclusion of evidence attenuate this effect. In the second essay we ask, “Can online reviews predict the worst doctors?” We examine the power of online reviews to detect low quality, as measured by state medical board sanctions. We find that online reviews are somewhat predictive of a doctor’s suitability to practice medicine; however, not all the data are useful. Numerical or star ratings provide the strongest quality signal; user-submitted text provides some signal but is subsumed almost completely by ratings. Of the ratings variables in our dataset, we find that punctuality, rather than knowledge, is the strongest predictor of medical board sanctions. These results challenge the definition of credence products, which is a long-standing construct in economics of information theory. Our results also have implications for online review users, review platforms, and for the use of predictive modeling in the context of information systems research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation applies statistical methods to the evaluation of automatic summarization using data from the Text Analysis Conferences in 2008-2011. Several aspects of the evaluation framework itself are studied, including the statistical testing used to determine significant differences, the assessors, and the design of the experiment. In addition, a family of evaluation metrics is developed to predict the score an automatically generated summary would receive from a human judge and its results are demonstrated at the Text Analysis Conference. Finally, variations on the evaluation framework are studied and their relative merits considered. An over-arching theme of this dissertation is the application of standard statistical methods to data that does not conform to the usual testing assumptions.