5 resultados para informal and formal learning

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Certain environments can inhibit learning and stifle enthusiasm, while others enhance learning or stimulate curiosity. Furthermore, in a world where technological change is accelerating we could ask how might architecture connect resource abundant and resource scarce innovation environments? Innovation environments developed out of necessity within urban villages and those developed with high intention and expectation within more institutionalized settings share a framework of opportunity for addressing change through learning and education. This thesis investigates formal and informal learning environments and how architecture can stimulate curiosity, enrich learning, create common ground, and expand access to education. The reason for this thesis exploration is to better understand how architects might design inclusive environments that bring people together to build sustainable infrastructure encouraging innovation and adaptation to change for years to come. The context of this thesis is largely based on Colin McFarlane’s theory that the “city is an assemblage for learning” The socio-spatial perspective in urbanism, considers how built infrastructure and society interact. Through the urban realm, inhabitants learn to negotiate people, space, politics, and resources affecting their daily lives. The city is therefore a dynamic field of emergent possibility. This thesis uses the city as a lens through which the boundaries between informal and formal logics as well as the public and private might be blurred. Through analytical processes I have examined the environmental devices and assemblage of factors that consistently provide conditions through which learning may thrive. These parameters that make a creative space significant can help suggest the design of common ground environments through which innovation is catalyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Socioeconomic status (SES) influences language and cognitive development, with discrepancies particularly noticeable in vocabulary development. This study examines how SES-related differences impact the development of syntactic processing, cognitive inhibition, and word learning. 38 4-5-year-olds from higher- and lower-SES backgrounds completed a word-learning task, in which novel words were embedded in active and passive sentences. Critically, unlike the active sentences, all passive sentences required a syntactic revision. Measures of cognitive inhibition were obtained through a modified Stroop task. Results indicate that lower-SES participants had more difficulty using inhibitory functions to resolve conflict compared to their higher-SES counterparts. However, SES did not impact language processing, as the language outcomes were similar across SES background. Additionally, stronger inhibitory processes were related to better language outcomes in the passive sentence condition. These results suggest that cognitive inhibition impact language processing, but this function may vary across children from different SES backgrounds

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This quantitative study examines the impact of teacher practices on student achievement in classrooms where the English is Fun Interactive Radio Instruction (IRI) programs were being used. A contemporary IRI design using a dual-audience approach, the English is Fun IRI programs delivered daily English language instruction to students in grades 1 and 2 in Delhi and Rajasthan through 120 30-minute programs via broadcast radio (the first audience) while modeling pedagogical techniques and behaviors for their teachers (the second audience). Few studies have examined how the dual-audience approach influences student learning. Using existing data from 32 teachers and 696 students, this study utilizes a multivariate multilevel model to examine the role of the primary expectations for teachers (e.g., setting up the IRI classroom, following instructions from the radio characters and ensuring students are participating) and the role of secondary expectations for teachers (e.g., modeling pedagogies and facilitating learning beyond the instructions) in promoting students’ learning in English listening skills, knowledge of vocabulary and use of sentences. The study finds that teacher practice on both sets of expectations mattered, but that practice in the secondary expectations mattered more. As expected, students made the smallest gains in the most difficult linguistic task (sentence use). The extent to which teachers satisfied the primary and secondary expectations was associated with gains in all three skills – confirming the relationship between students’ English proficiency and teacher practice in a dual-audience program. When it came to gains in students’ scores in sentence use, a teacher whose focus was greater on primary expectations had a negative effect on student performance in both states. In all, teacher practice clearly mattered but not in the same way for all three skills. An optimal scenario for teacher practice is presented in which gains in all three skills are maximized. These findings have important implications for the way the classroom teacher is cast in IRI programs that utilize a dual-audience approach and in the way IRI programs are contracted insofar as the role of the teacher in instruction is minimized and access is limited to instructional support from the IRI lessons alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural language processing has achieved great success in a wide range of ap- plications, producing both commercial language services and open-source language tools. However, most methods take a static or batch approach, assuming that the model has all information it needs and makes a one-time prediction. In this disser- tation, we study dynamic problems where the input comes in a sequence instead of all at once, and the output must be produced while the input is arriving. In these problems, predictions are often made based only on partial information. We see this dynamic setting in many real-time, interactive applications. These problems usually involve a trade-off between the amount of input received (cost) and the quality of the output prediction (accuracy). Therefore, the evaluation considers both objectives (e.g., plotting a Pareto curve). Our goal is to develop a formal understanding of sequential prediction and decision-making problems in natural language processing and to propose efficient solutions. Toward this end, we present meta-algorithms that take an existent batch model and produce a dynamic model to handle sequential inputs and outputs. Webuild our framework upon theories of Markov Decision Process (MDP), which allows learning to trade off competing objectives in a principled way. The main machine learning techniques we use are from imitation learning and reinforcement learning, and we advance current techniques to tackle problems arising in our settings. We evaluate our algorithm on a variety of applications, including dependency parsing, machine translation, and question answering. We show that our approach achieves a better cost-accuracy trade-off than the batch approach and heuristic-based decision- making approaches. We first propose a general framework for cost-sensitive prediction, where dif- ferent parts of the input come at different costs. We formulate a decision-making process that selects pieces of the input sequentially, and the selection is adaptive to each instance. Our approach is evaluated on both standard classification tasks and a structured prediction task (dependency parsing). We show that it achieves similar prediction quality to methods that use all input, while inducing a much smaller cost. Next, we extend the framework to problems where the input is revealed incremen- tally in a fixed order. We study two applications: simultaneous machine translation and quiz bowl (incremental text classification). We discuss challenges in this set- ting and show that adding domain knowledge eases the decision-making problem. A central theme throughout the chapters is an MDP formulation of a challenging problem with sequential input/output and trade-off decisions, accompanied by a learning algorithm that solves the MDP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early human development offers a unique perspective in investigating the potential cognitive and social implications of action and perception. Specifically, during infancy, action production and action perception undergo foundational developments. One essential component to examine developments in action processing is the analysis of others’ actions as meaningful and goal-directed. Little research, however, has examined the underlying neural systems that may be associated with emerging action and perception abilities, and infants’ learning of goal-directed actions. The current study examines the mu rhythm—a brain oscillation found in the electroencephalogram (EEG)—that has been associated with action and perception. Specifically, the present work investigates whether the mu signal is related to 9-month-olds’ learning of a novel goal-directed means-end task. The findings of this study demonstrate a relation between variations in mu rhythm activity and infants’ ability to learn a novel goal-directed means-end action task (compared to a visual pattern learning task used as a comparison task). Additionally, we examined the relations between standardized assessments of early motor competence, infants’ ability to learn a novel goal-directed task, and mu rhythm activity. We found that: 1a) mu rhythm activity during observation of a grasp uniquely predicted infants’ learning on the cane training task, 1b) mu rhythm activity during observation and execution of a grasp did not uniquely predict infants’ learning on the visual pattern learning task (comparison learning task), 2) infants’ motor competence did not predict infants’ learning on the cane training task, 3) mu rhythm activity during observation and execution was not related to infants’ measure of motor competence, and 4) mu rhythm activity did not predict infants’ learning on the cane task above and beyond infants’ motor competence. The results from this study demonstrate that mu rhythm activity is a sensitive measure to detect individual differences in infants’ action and perception abilities, specifically their learning of a novel goal-directed action.