3 resultados para industrial automation and business models
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Secure computation involves multiple parties computing a common function while keeping their inputs private, and is a growing field of cryptography due to its potential for maintaining privacy guarantees in real-world applications. However, current secure computation protocols are not yet efficient enough to be used in practice. We argue that this is due to much of the research effort being focused on generality rather than specificity. Namely, current research tends to focus on constructing and improving protocols for the strongest notions of security or for an arbitrary number of parties. However, in real-world deployments, these security notions are often too strong, or the number of parties running a protocol would be smaller. In this thesis we make several steps towards bridging the efficiency gap of secure computation by focusing on constructing efficient protocols for specific real-world settings and security models. In particular, we make the following four contributions: - We show an efficient (when amortized over multiple runs) maliciously secure two-party secure computation (2PC) protocol in the multiple-execution setting, where the same function is computed multiple times by the same pair of parties. - We improve the efficiency of 2PC protocols in the publicly verifiable covert security model, where a party can cheat with some probability but if it gets caught then the honest party obtains a certificate proving that the given party cheated. - We show how to optimize existing 2PC protocols when the function to be computed includes predicate checks on its inputs. - We demonstrate an efficient maliciously secure protocol in the three-party setting.
Resumo:
Social network sites (SNS), such as Facebook, Google+ and Twitter, have attracted hundreds of millions of users daily since their appearance. Within SNS, users connect to each other, express their identity, disseminate information and form cooperation by interacting with their connected peers. The increasing popularity and ubiquity of SNS usage and the invaluable user behaviors and connections give birth to many applications and business models. We look into several important problems within the social network ecosystem. The first one is the SNS advertisement allocation problem. The other two are related to trust mechanisms design in social network setting, including local trust inference and global trust evaluation. In SNS advertising, we study the problem of advertisement allocation from the ad platform's angle, and discuss its differences with the advertising model in the search engine setting. By leveraging the connection between social networks and hyperbolic geometry, we propose to solve the problem via approximation using hyperbolic embedding and convex optimization. A hyperbolic embedding method, \hcm, is designed for the SNS ad allocation problem, and several components are introduced to realize the optimization formulation. We show the advantages of our new approach in solving the problem compared to the baseline integer programming (IP) formulation. In studying the problem of trust mechanisms in social networks, we consider the existence of distrust (i.e. negative trust) relationships, and differentiate between the concept of local trust and global trust in social network setting. In the problem of local trust inference, we propose a 2-D trust model. Based on the model, we develop a semiring-based trust inference framework. In global trust evaluation, we consider a general setting with conflicting opinions, and propose a consensus-based approach to solve the complex problem in signed trust networks.
Resumo:
Despite the extensive implementation of Superstreets on congested arterials, reliable methodologies for such designs remain unavailable. The purpose of this research is to fill the information gap by offering reliable tools to assist traffic professionals in the design of Superstreets with and without signal control. The entire tool developed in this thesis consists of three models. The first model is used to determine the minimum U-turn offset length for an Un-signalized Superstreet, given the arterial headway distribution of the traffic flows and the distribution of critical gaps among drivers. The second model is designed to estimate the queue size and its variation on each critical link in a signalized Superstreet, based on the given signal plan and the range of observed volumes. Recognizing that the operational performance of a Superstreet cannot be achieved without an effective signal plan, the third model is developed to produce a signal optimization method that can generate progression offsets for heavy arterial flows moving into and out of such an intersection design.