4 resultados para haptic

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

When teaching students with visual impairments educators generally rely on tactile tools to depict visual mathematical topics. Tactile media, such as embossed paper and simple manipulable materials, are typically used to convey graphical information. Although these tools are easy to use and relatively inexpensive, they are solely tactile and are not modifiable. Dynamic and interactive technologies such as pin matrices and haptic pens are also commercially available, but tend to be more expensive and less intuitive. This study aims to bridge the gap between easy-to-use tactile tools and dynamic, interactive technologies in order to facilitate the haptic learning of mathematical concepts. We developed an haptic assistive device using a Tanvas electrostatic touchscreen that provides the user with multimodal (haptic, auditory, and visual) output. Three methodological steps comprise this research: 1) a systematic literature review of the state of the art in the design and testing of tactile and haptic assistive devices, 2) a user-centered system design, and 3) testing of the system’s effectiveness via a usability study. The electrostatic touchscreen exhibits promise as an assistive device for displaying visual mathematical elements via the haptic modality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gemstone Team Vision

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Team NAVIGATE aims to create a robust, portable navigational aid for the blind. Our prototype uses depth data from the Microsoft Kinect to perform realtime obstacle avoidance in unfamiliar indoor environments. The device augments the white cane by performing two signi cant functions: detecting overhanging objects and identifying stairs. Based on interviews with blind individuals, we found a combined audio and haptic feedback system best for communicating environmental information. Our prototype uses vibration motors to indicate the presence of an obstacle and an auditory command to alert the user to stairs ahead. Through multiple trials with sighted and blind participants, the device was successful in detecting overhanging objects and approaching stairs. The device increased user competency and adaptability across all trials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When a task must be executed in a remote or dangerous environment, teleoperation systems may be employed to extend the influence of the human operator. In the case of manipulation tasks, haptic feedback of the forces experienced by the remote (slave) system is often highly useful in improving an operator's ability to perform effectively. In many of these cases (especially teleoperation over the internet and ground-to-space teleoperation), substantial communication latency exists in the control loop and has the strong tendency to cause instability of the system. The first viable solution to this problem in the literature was based on a scattering/wave transformation from transmission line theory. This wave transformation requires the designer to select a wave impedance parameter appropriate to the teleoperation system. It is widely recognized that a small value of wave impedance is well suited to free motion and a large value is preferable for contact tasks. Beyond this basic observation, however, very little guidance exists in the literature regarding the selection of an appropriate value. Moreover, prior research on impedance selection generally fails to account for the fact that in any realistic contact task there will simultaneously exist contact considerations (perpendicular to the surface of contact) and quasi-free-motion considerations (parallel to the surface of contact). The primary contribution of the present work is to introduce an approximate linearized optimum for the choice of wave impedance and to apply this quasi-optimal choice to the Cartesian reality of such a contact task, in which it cannot be expected that a given joint will be either perfectly normal to or perfectly parallel to the motion constraint. The proposed scheme selects a wave impedance matrix that is appropriate to the conditions encountered by the manipulator. This choice may be implemented as a static wave impedance value or as a time-varying choice updated according to the instantaneous conditions encountered. A Lyapunov-like analysis is presented demonstrating that time variation in wave impedance will not violate the passivity of the system. Experimental trials, both in simulation and on a haptic feedback device, are presented validating the technique. Consideration is also given to the case of an uncertain environment, in which an a priori impedance choice may not be possible.