1 resultado para habitat fragmentation
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The Mongolian gazelle, Procapra gutturosa, resides in the immense and dynamic ecosystem of the Eastern Mongolian Steppe. The Mongolian Steppe ecosystem dynamics, including vegetation availability, change rapidly and dramatically due to unpredictable precipitation patterns. The Mongolian gazelle has adapted to this unpredictable vegetation availability by making long range nomadic movements. However, predicting these movements is challenging and requires a complex model. An accurate model of gazelle movements is needed, as rampant habitat fragmentation due to human development projects - which inhibit gazelles from obtaining essential resources - increasingly threaten this nomadic species. We created a novel model using an Individual-based Neural Network Genetic Algorithm (ING) to predict how habitat fragmentation affects animal movement, using the Mongolian Steppe as a model ecosystem. We used Global Positioning System (GPS) collar data from real gazelles to “train” our model to emulate characteristic patterns of Mongolian gazelle movement behavior. These patterns are: preferred vegetation resources (NDVI), displacement over certain time lags, and proximity to human areas. With this trained model, we then explored how potential scenarios of habitat fragmentation may affect gazelle movement. This model can be used to predict how fragmentation of the Mongolian Steppe may affect the Mongolian gazelle. In addition, this model is novel in that it can be applied to other ecological scenarios, since we designed it in modules that are easily interchanged.