3 resultados para ground-state spin and parity

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study explores the origins and development of honors education at a Historically Black College and University (HBCU), Morgan State University, within the context of the Maryland higher education system. During the last decades, public and private institutions have invested in honors experiences for their high-ability students. These programs have become recruitment magnets while also raising institutional academic profiles, justifying additional campus resources. The history of higher education reveals simultaneous narratives such as the tension of post-desegregated Black colleges facing uncertain futures; and the progress of the rise and popularity of collegiate honors programs. Both accounts contribute to tracing seemingly parallel histories in higher education that speaks to the development of honors education at HBCUs. While the extant literature on honors development at Historically White Institutions (HWIs) of higher education has gradually emerged, our understanding of activity at HBCUs is spotty at best. One connection of these two phenomena is the development of honors programs at HBCUs. Using Morgan State University, I examine the role and purpose of honors education at a public HBCU through archival materials and oral histories. Major unexpected findings that constructed this historical narrative beyond its original scope were the impact of the 1935/6 Murray v Pearson, the first higher education desegregation case. Other emerging themes were Morgan’s decades-long efforts to resist state control of its governance, Maryland’s misuse of Morrill Act funds, and the border state’s resistance to desegregation. Also, the broader histories of Black education, racism, and Black citizenship from Dred Scott and Plessy, the 1863 Emancipation Proclamation to Brown, inform this study. As themes are threaded together, Critical Race Theory provides the framework for understanding the emerging themes. In the immediate wake of the post-desegregation era, HBCUs had to address future challenges such as purpose and mission. Competing with HWIs for high-achieving Black students was one of the unanticipated consequences of the Brown decision. Often marginalized from higher education research literature, this study will broaden the research repository of honors education by documenting HBCU contributions despite a challenging landscape.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study identifies and compares competing policy stories of key actors involved in the Ecuadorian education reform under President Rafael Correa from 2007-2015. By revealing these competing policy stories the study generates insights into the political and technical aspects of education reform in a context where state capacity has been eroded by decades of neoliberal policies. Since the elections in 2007, President Correa has focused much of his political effort and capital on reconstituting the state’s authority and capacity to not only formulate but also implement public policies. The concentration of power combined with a capacity building agenda allowed the Correa government to advance an ambitious comprehensive education reform with substantive results in equity and quality. At the same time the concentration of power has undermined a more inclusive and participatory approach which are essential for deepening and sustaining the reform. This study underscores both the limits and importance of state control over education; the inevitable conflicts and complexities associated with education reforms that focus on quality; and the limits and importance of participation in reform. Finally, it examines the analytical benefits of understanding governance, participation and quality as socially constructed concepts that are tied to normative and ideological interests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frustrated systems, typically characterized by competing interactions that cannot all be simultaneously satisfied, are ubiquitous in nature and display many rich phenomena and novel physics. Artificial spin ices (ASIs), arrays of lithographically patterned Ising-like single-domain magnetic nanostructures, are highly tunable systems that have proven to be a novel method for studying the effects of frustration and associated properties. The strength and nature of the frustrated interactions between individual magnets are readily tuned by design and the exact microstate of the system can be determined by a variety of characterization techniques. Recently, thermal activation of ASI systems has been demonstrated, introducing the spontaneous reversal of individual magnets and allowing for new explorations of novel phase transitions and phenomena using these systems. In this work, we introduce a new, robust material with favorable magnetic properties for studying thermally active ASI and use it to investigate a variety of ASI geometries. We reproduce previously reported perfect ground-state ordering in the square geometry and present studies of the kagome lattice showing the highest yet degree of ordering observed in this fully frustrated system. We consider theoretical predictions of long-range order in ASI and use both our experimental studies and kinetic Monte Carlo simulations to evaluate these predictions. Next, we introduce controlled topological defects into our square ASI samples and observe a new, extended frustration effect of the system. When we introduce a dislocation into the lattice, we still see large domains of ground-state order, but, in every sample, a domain wall containing higher energy spin arrangements originates from the dislocation, resolving a discontinuity in the ground-state order parameter. Locally, the magnets are unfrustrated, but frustration of the lattice persists due to its topology. We demonstrate the first direct imaging of spin configurations resulting from topological frustration in any system and make predictions on how dislocations could affect properties in numerous materials systems.