3 resultados para green algae
em DRUM (Digital Repository at the University of Maryland)
Resumo:
18AP29, the Green Family Printshop, also known as the Jonas Green site, was excavated from 1983 to 1986 by Archaeology in Annapolis and Historic Annapolis Foundation. The site is not only the home of a significant figure in colonial Maryland but is also the location of one of the first colonial printing operations in Maryland. This site represents an important pre-industrial business in Annapolis. While this domestic site is complicated and rich, one of the most fascinating aspect of 18AP29 is the discovery of a large quantity of printers' type. Extensive analysis of the printers' type and documentary research on one of the print shop's products, the colonial newspaper, the Maryland Gazette, provides insights into the print culture which was developing during the 18th and 19th centuries. This report summarizes the stratigraphic analysis, minimum vessel counts, and faunal analysis. It provides some description of the printers' type.
Resumo:
Biogas is a mixture of methane and other gases. In its crude state, it contains carbon dioxide (CO2) that reduces its energy efficiency and hydrogen sulfide (H2S) that is toxic and highly corrosive. Because chemical methods of removal are expensive and environmentally hazardous, this project investigated an algal-based system to remove CO2 from biogas. An anaerobic digester was used to mimic landfill biogas. Iron oxide and an alkaline spray were used to remove H2S and CO2 respectively. The CO2-laden alkali solution was added to a helical photobioreactor where the algae metabolized the dissolved CO2 to generate algal biomass. Although technical issues prevented testing of the complete system for functionality, cost analysis was completed and showed that the system, in its current state, is not economically feasible. However, modifications may reduce operation costs.
Resumo:
Green roofs are one solution to stormwater runoff which is a major environmental problem. However, the majority of green roofs are primarily implemented on flat roofed commercial buildings and not residential homes with sloped roofs. Team SO GREEN designed a light-weight green roof system retrofit for residential homes. Between June and November 2014, green roof performance data was collected and compared between the designed sloped roofs and a non-sloped control. The sloped design performed well and one test slope was improved with a recirculating irrigation system. An economic analysis was made and a focus group determined preliminary consumer interest, aesthetic preferences, and barriers. This study enriches the body of knowledge regarding bringing green roof systems to the residential home market.