2 resultados para gray level probabilty density functions

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in mobile phone cameras have poised them to take over compact hand-held cameras as the consumer’s preferred camera option. Along with advances in the number of pixels, motion blur removal, face-tracking, and noise reduction algorithms have significant roles in the internal processing of the devices. An undesired effect of severe noise reduction is the loss of texture (i.e. low-contrast fine details) of the original scene. Current established methods for resolution measurement fail to accurately portray the texture loss incurred in a camera system. The development of an accurate objective method to identify the texture preservation or texture reproduction capability of a camera device is important in this regard. The ‘Dead Leaves’ target has been used extensively as a method to measure the modulation transfer function (MTF) of cameras that employ highly non-linear noise-reduction methods. This stochastic model consists of a series of overlapping circles with radii r distributed as r−3, and having uniformly distributed gray level, which gives an accurate model of occlusion in a natural setting and hence mimics a natural scene. This target can be used to model the texture transfer through a camera system when a natural scene is captured. In the first part of our study we identify various factors that affect the MTF measured using the ‘Dead Leaves’ chart. These include variations in illumination, distance, exposure time and ISO sensitivity among others. We discuss the main differences of this method with the existing resolution measurement techniques and identify the advantages. In the second part of this study, we propose an improvement to the current texture MTF measurement algorithm. High frequency residual noise in the processed image contains the same frequency content as fine texture detail, and is sometimes reported as such, thereby leading to inaccurate results. A wavelet thresholding based denoising technique is utilized for modeling the noise present in the final captured image. This updated noise model is then used for calculating an accurate texture MTF. We present comparative results for both algorithms under various image capture conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the number of fungal pathogen outbreaks become more frequent worldwide across taxa, so have the number of species extirpations and communities persisting with the pathogen. This phenomenon raises questions, such as: “what leads to host extinction during an outbreak?” and “how are hosts persisting once the pathogen establishes?.” But the data on host populations and communities across life stages before and after pathogen arrival rarely exist to answer these questions. Over the past three to four decades, the amphibian-killing fungus Batrachochytrim dendrobatidis (Bd) spread in a wave-like manner across Central America, leading to rapid species extirpations and population declines. I collected data on tadpole and adult amphibians in El Copé, Panama before, during, and after the Bd outbreak to answer these questions. I used Bayesian statistical approaches to account for imperfect host and pathogen detection of marked and unmarked individuals. In the tadpole community, within 11 months of Bds arrival, density and occupancy rapidly declined. Species losses were phylogenetically correlated, with glass frogs disappearing first, and tree frogs and poison-dart frogs remaining. I found that tadpole communities resembled one another more strongly after the outbreak than they did before Bd invasion. I found no tadpoles within 22 months of the outbreak and limited signs of recovery within 10 years. In contrast, at the same site, for a population of male glass frogs, Espadarana prosopleon, I found that 10 years post-outbreak, the population was consistently half its historic abundance, and that the lack of recruits to the population explained why the population had not rebounded, rather than high pathogen-induced mortality. And finally, examining the entire amphibian community, I found high pathogen prevalence, low infection intensities, and high survival rates of uninfected and infected hosts. Bd transmission risk, i.e., the probability a susceptible host becomes infected, did not relate to host density, pathogen prevalence, or infection intensity– Bd transmission risk was uniform across the study area. My results are especially relevant to conservation biologists aiming to predict the future impacts of Bd outbreaks, those trying to manage persisting populations, and those interested in reintroducing species back into wild amphibian communities.