2 resultados para gaseous pollutants
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Most major cities in the eastern United States have air quality deemed unhealthy by the EPA under a set of regulations known as the National Ambient Air Quality Standards (NAAQS). The worst air quality in Maryland is measured in Edgewood, MD, a small community located along the Chesapeake Bay and generally downwind of Baltimore during hot, summertime days. Direct measurements and numerical simulations were used to investigate how meteorology and chemistry conspire to create adverse levels of photochemical smog especially at this coastal location. Ozone (O3) and oxidized reactive nitrogen (NOy), a family of ozone precursors, were measured over the Chesapeake Bay during a ten day experiment in July 2011 to better understand the formation of ozone over the Bay and its impact on coastal communities such as Edgewood. Ozone over the Bay during the afternoon was 10% to 20% higher than the closest upwind ground sites. A combination of complex boundary layer dynamics, deposition rates, and unaccounted marine emissions play an integral role in the regional maximum of ozone over the Bay. The CAMx regional air quality model was assessed and enhanced through comparison with data from NASA’s 2011 DISCOVER-AQ field campaign. Comparisons show a model overestimate of NOy by +86.2% and a model underestimate of formaldehyde (HCHO) by –28.3%. I present a revised model framework that better captures these observations and the response of ozone to reductions of precursor emissions. Incremental controls on electricity generating stations will produce greater benefits for surface ozone while additional controls on mobile sources may yield less benefit because cars emit less pollution than expected. Model results also indicate that as ozone concentrations improve with decreasing anthropogenic emissions, the photochemical lifetime of tropospheric ozone increases. The lifetime of ozone lengthens because the two primary gas-phase sinks for odd oxygen (Ox ≈ NO2 + O3) – attack by hydroperoxyl radicals (HO2) on ozone and formation of nitrate – weaken with decreasing pollutant emissions. This unintended consequence of air quality regulation causes pollutants to persist longer in the atmosphere, and indicates that pollutant transport between states and countries will likely play a greater role in the future.
Resumo:
Carbon and nitrogen loading to streams and rivers contributes to eutrophication as well as greenhouse gas (GHG) production in streams, rivers and estuaries. My dissertation consists of three research chapters, which examine interactions and potential trade-offs between water quality and greenhouse gas production in urban streams of the Chesapeake Bay watershed. My first research project focused on drivers of carbon export and quality in an urbanized river. I found that watershed carbon sources (soils and leaves) contributed more than in-stream production to overall carbon export, but that periods of high in-stream productivity were important over seasonal and daily timescales. My second research chapter examined the influence of urban storm-water and sanitary infrastructure on dissolved and gaseous carbon and nitrogen concentrations in headwater streams. Gases (CO2, CH4, and N2O) were consistently super-saturated throughout the course of a year. N2O concentrations in streams draining septic systems were within the high range of previously published values. Total dissolved nitrogen concentration was positively correlated with CO2 and N2O and negatively correlated with CH4. My third research chapter examined a long-term (15-year) record of GHG emissions from soils in rural forests, urban forest, and urban lawns in Baltimore, MD. CO2, CH4, and N2O emissions showed positive correlations with temperature at each site. Lawns were a net source of CH4 + N2O, whereas forests were net sinks. Gross CO2 fluxes were also highest in lawns, in part due to elevated growing-season temperatures. While land cover influences GHG emissions from soils, the overall role of land cover on this flux is very small (< 0.5%) compared with gases released from anthropogenic sources, according to a recent GHG budget of the Baltimore metropolitan area, where this study took place.