3 resultados para first order transition system
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The study of quantum degenerate gases has many applications in topics such as condensed matter dynamics, precision measurements and quantum phase transitions. We built an apparatus to create 87Rb Bose-Einstein condensates (BECs) and generated, via optical and magnetic interactions, novel quantum systems in which we studied the contained phase transitions. For our first experiment we quenched multi-spin component BECs from a miscible to dynamically unstable immiscible state. The transition rapidly drives any spin fluctuations with a coherent growth process driving the formation of numerous spin polarized domains. At much longer times these domains coarsen as the system approaches equilibrium. For our second experiment we explored the magnetic phases present in a spin-1 spin-orbit coupled BEC and the contained quantum phase transitions. We observed ferromagnetic and unpolarized phases which are stabilized by the spin-orbit coupling’s explicit locking between spin and motion. These two phases are separated by a critical curve containing both first-order and second-order transitions joined at a critical point. The narrow first-order transition gives rise to long-lived metastable states. For our third experiment we prepared independent BECs in a double-well potential, with an artificial magnetic field between the BECs. We transitioned to a single BEC by lowering the barrier while expanding the region of artificial field to cover the resulting single BEC. We compared the vortex distribution nucleated via conventional dynamics to those produced by our procedure, showing our dynamical process populates vortices much more rapidly and in larger number than conventional nucleation.
Resumo:
In this work we consider several instances of the following problem: "how complicated can the isomorphism relation for countable models be?"' Using the Borel reducibility framework, we investigate this question with regard to the space of countable models of particular complete first-order theories. We also investigate to what extent this complexity is mirrored in the number of back-and-forth inequivalent models of the theory. We consider this question for two large and related classes of theories. First, we consider o-minimal theories, showing that if T is o-minimal, then the isomorphism relation is either Borel complete or Borel. Further, if it is Borel, we characterize exactly which values can occur, and when they occur. In all cases Borel completeness implies lambda-Borel completeness for all lambda. Second, we consider colored linear orders, which are (complete theories of) a linear order expanded by countably many unary predicates. We discover the same characterization as with o-minimal theories, taking the same values, with the exception that all finite values are possible except two. We characterize exactly when each possibility occurs, which is similar to the o-minimal case. Additionally, we extend Schirrman's theorem, showing that if the language is finite, then T is countably categorical or Borel complete. As before, in all cases Borel completeness implies lambda-Borel completeness for all lambda.
Resumo:
Mathematical models of gene regulation are a powerful tool for understanding the complex features of genetic control. While various modeling efforts have been successful at explaining gene expression dynamics, much less is known about how evolution shapes the structure of these networks. An important feature of gene regulatory networks is their stability in response to environmental perturbations. Regulatory systems are thought to have evolved to exist near the transition between stability and instability, in order to have the required stability to environmental fluctuations while also being able to achieve a wide variety of functions (corresponding to different dynamical patterns). We study a simplified model of gene network evolution in which links are added via different selection rules. These growth models are inspired by recent work on `explosive' percolation which shows that when network links are added through competitive rather than random processes, the connectivity phase transition can be significantly delayed, and when it is reached, it appears to be first order (discontinuous, e.g., going from no failure at all to large expected failure) instead of second order (continuous, e.g., going from no failure at all to very small expected failure). We find that by modifying the traditional framework for networks grown via competitive link addition to capture how gene networks evolve to avoid damage propagation, we also see significant delays in the transition that depend on the selection rules, but the transitions always appear continuous rather than `explosive'.