3 resultados para error bounds
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Adolescence is characterized by dramatic hormonal, physical, and psychological changes, and is a period of risk for affective and anxiety disorders. Pubertal development during adolescence plays a major role in the emergence of these disorders, particularly among girls. Thus, it is critical to identify early biomarkers of risk. One potential biomarker, the error-related negativity (ERN), is an event-related potential following an erroneous response. Individuals with an anxiety disorder demonstrate a greater ERN than healthy comparisons, an association which is stronger in adolescence, suggesting that pubertal development may play a role in the ERN as a predictor of anxiety. One form of anxiety often observed in adolescence, particularly among girls, is social anxiety, which is defined as anxiety elicited by social-evaluative contexts. In adults, enhancements of the ERN in social-evaluative contexts is positively related to social anxiety symptoms, suggesting that the ERN in social contexts may serve as a biomarker for social anxiety. This dissertation examined the ERN in and its relation with puberty and social anxiety among 76 adolescent girls. Adolescent girls completed a flanker task in two different
Resumo:
This thesis proves certain results concerning an important question in non-equilibrium quantum statistical mechanics which is the derivation of effective evolution equations approximating the dynamics of a system of large number of bosons initially at equilibrium (ground state at very low temperatures). The dynamics of such systems are governed by the time-dependent linear many-body Schroedinger equation from which it is typically difficult to extract useful information due to the number of particles being large. We will study quantitatively (i.e. with explicit bounds on the error) how a suitable one particle non-linear Schroedinger equation arises in the mean field limit as number of particles N → ∞ and how the appropriate corrections to the mean field will provide better approximations of the exact dynamics. In the first part of this thesis we consider the evolution of N bosons, where N is large, with two-body interactions of the form N³ᵝv(Nᵝ⋅), 0≤β≤1. The parameter β measures the strength and the range of interactions. We compare the exact evolution with an approximation which considers the evolution of a mean field coupled with an appropriate description of pair excitations, see [18,19] by Grillakis-Machedon-Margetis. We extend the results for 0 ≤ β < 1/3 in [19, 20] to the case of β < 1/2 and obtain an error bound of the form p(t)/Nᵅ, where α>0 and p(t) is a polynomial, which implies a specific rate of convergence as N → ∞. In the second part, utilizing estimates of the type discussed in the first part, we compare the exact evolution with the mean field approximation in the sense of marginals. We prove that the exact evolution is close to the approximate in trace norm for times of the order o(1)√N compared to log(o(1)N) as obtained in Chen-Lee-Schlein [6] for the Hartree evolution. Estimates of similar type are obtained for stronger interactions as well.
Resumo:
Coprime and nested sampling are well known deterministic sampling techniques that operate at rates significantly lower than the Nyquist rate, and yet allow perfect reconstruction of the spectra of wide sense stationary signals. However, theoretical guarantees for these samplers assume ideal conditions such as synchronous sampling, and ability to perfectly compute statistical expectations. This thesis studies the performance of coprime and nested samplers in spatial and temporal domains, when these assumptions are violated. In spatial domain, the robustness of these samplers is studied by considering arrays with perturbed sensor locations (with unknown perturbations). Simplified expressions for the Fisher Information matrix for perturbed coprime and nested arrays are derived, which explicitly highlight the role of co-array. It is shown that even in presence of perturbations, it is possible to resolve $O(M^2)$ under appropriate conditions on the size of the grid. The assumption of small perturbations leads to a novel ``bi-affine" model in terms of source powers and perturbations. The redundancies in the co-array are then exploited to eliminate the nuisance perturbation variable, and reduce the bi-affine problem to a linear underdetermined (sparse) problem in source powers. This thesis also studies the robustness of coprime sampling to finite number of samples and sampling jitter, by analyzing their effects on the quality of the estimated autocorrelation sequence. A variety of bounds on the error introduced by such non ideal sampling schemes are computed by considering a statistical model for the perturbation. They indicate that coprime sampling leads to stable estimation of the autocorrelation sequence, in presence of small perturbations. Under appropriate assumptions on the distribution of WSS signals, sharp bounds on the estimation error are established which indicate that the error decays exponentially with the number of samples. The theoretical claims are supported by extensive numerical experiments.